-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhubconf.py
43 lines (33 loc) · 1.36 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# based on https://github.com/bryandlee/animegan2-pytorch/blob/25d7b017267208dfaf34026aa3425e518372aa2f/hubconf.py
import torch
def generator(pretrained=True, device="cpu", progress=True, check_hash=True, name="arcane_animegan_0.2"):
from model import Generator
device = torch.device(device)
model = Generator().to(device)
ckpt_url = f"https://github.com/ttop32/ArcaneAnimeGAN/raw/main/weights/{name}.pt"
if pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(
ckpt_url, map_location=device, progress=progress, check_hash=check_hash,
)
)
return model
def face2paint(device="cpu", size=256):
from PIL import Image
from torchvision.transforms.functional import to_pil_image, to_tensor
def face2paint(
model: torch.nn.Module,
img: Image.Image,
size: int = size,
device: str = device,
) -> Image.Image:
w, h = img.size
s = min(w, h)
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
img = img.resize((size, size), Image.LANCZOS)
with torch.no_grad():
input = to_tensor(img).unsqueeze(0) * 2.0 - 1
output = model(input.to(device)).cpu()[0]
output = to_pil_image((output * 0.5 + 0.5).clip(0, 1))
return output
return face2paint