-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDP_rhinopy.py
437 lines (353 loc) · 17.7 KB
/
DP_rhinopy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#Vitalis, DP Arrowhead Tetragonal Unit Cell Design
import rhinoscriptsyntax as rs
import Rhino
import math
import System
import scriptcontext as sc
import Rhino, System
a = 10.571 # DP1545 9.483mm, DP1560 8.95mm, DP3048 10.571mm
theta1 = 0.523599 # 15 degrees in radians 0.261799, 30 degrees in radians 0.523599
theta2 = 0.837758 # 45 degrees in radians 0.785398, 60 degrees in radians 1.0472, 48 degrees in radians 0.837758
n = 5 # ALL n=5
m = 7 # DP1545 & DP1560=4, DP3048=7
beam_radius = 0.5325
stubL = beam_radius-0.5325 # 0.52 DP1545, 0.5225 DP1560, 0.53 DP3048 circular beam radius
##-------------------------------------------------------------------------------------------##
## BEGGINING OF SCRIPT
##-------------------------------------------------------------------------------------------##
### MAIN PART
#Create sketch points and cylinders
point1 = rs.AddPoint(0.0, 0.0, 0.0)
point2 = rs.AddPoint(-a / 2, 0.0, -(a / 2) * math.tan(1.5708 - theta1 - theta2))
point3 = rs.AddPoint(a / 2, 0.0, -(a / 2) * math.tan(1.5708 - theta1 - theta2))
point4 = rs.AddPoint(0.0, 0.0, (a / 2) * math.tan(1.5708 - theta1)-(a / 2) * math.tan(1.5708 - theta1 - theta2))
cylinder1 = rs.AddCylinder(point2, point4, beam_radius)
cylinder2 = rs.AddCylinder(point4, point3, beam_radius)
cylinder3 = rs.AddCylinder(point3, point1, beam_radius)
cylinder4 = rs.AddCylinder(point1, point2, beam_radius)
# Create spheres at the nodes of part1
node1 = rs.AddSphere(point1, beam_radius)
node2 = rs.AddSphere(point2, beam_radius)
node3 = rs.AddSphere(point3, beam_radius)
node4 = rs.AddSphere(point4, beam_radius)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder1), rs.CopyObject(cylinder2),
rs.CopyObject(cylinder3), rs.CopyObject(cylinder4),rs.CopyObject(node2),
rs.CopyObject(node3), rs.CopyObject(node4)]
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(copied_objects, [0, 0, 0], 90.0)
copied_objects = rs.BooleanUnion(copied_objects)
# Group the original and rotated geometry
all_objects = [cylinder1, cylinder2, cylinder3, cylinder4, node1, node2, node3, node4] + copied_objects
group_name = rs.AddGroup()
rs.AddObjectsToGroup(all_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(all_objects)
## Create the linear instances
x_offset = a
y_offset = a
z_offset = (a / 2) * math.tan(1.5708 - theta1)-(a / 2) * math.tan(1.5708 - theta1 - theta2)
for i in range(n-1):
for y in range(n-1):
for j in range(m):
translation_vector = rs.VectorAdd((i * x_offset, y * y_offset, j * z_offset), (0, 0, 0))
rs.CopyObjects(unioned_objects, translation_vector)
rs.AddObjectsToGroup(unioned_objects, group_name)
##CORNERS
point1 = rs.AddPoint(-a, -a, 0.0)
point2 = rs.AddPoint(-a, -a/2, -(a / 2) * math.tan(1.5708 - theta1 - theta2))
point3 = rs.AddPoint(-a/2, -a, -(a / 2) * math.tan(1.5708 - theta1 - theta2))
point4 = rs.AddPoint(-a, -a, (a / 2) * math.tan(1.5708 - theta1)-(a / 2) * math.tan(1.5708 - theta1 - theta2))
cylinder1 = rs.AddCylinder(point2, point4, beam_radius)
cylinder2 = rs.AddCylinder(point4, point3, beam_radius)
cylinder3 = rs.AddCylinder(point3, point1, beam_radius)
cylinder4 = rs.AddCylinder(point1, point2, beam_radius)
# Create spheres at the nodes of part1
node1 = rs.AddSphere(point1, beam_radius)
node2 = rs.AddSphere(point2, beam_radius)
node3 = rs.AddSphere(point3, beam_radius)
node4 = rs.AddSphere(point4, beam_radius)
# Group the original and rotated geometry
all_objects = [cylinder1, cylinder2, cylinder3, cylinder4, node1, node2, node3, node4]
group_name = rs.AddGroup()
rs.AddObjectsToGroup(all_objects, group_name)
for j in range(m):
translation_vector = rs.VectorAdd((0, 0, j * z_offset), (0, 0, 0))
rs.CopyObjects(all_objects, translation_vector)
rs.AddObjectsToGroup(all_objects, group_name)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder1), rs.CopyObject(cylinder2),
rs.CopyObject(cylinder3), rs.CopyObject(cylinder4),rs.CopyObject(node1),rs.CopyObject(node2),
rs.CopyObject(node3), rs.CopyObject(node4)]
translation_vector = [(n-2) * a, 0, 0]
rs.RotateObjects(copied_objects, [0, 0, 1.0], 90.0)
rs.MoveObjects(copied_objects, translation_vector)
for j in range(m):
translation_vector = rs.VectorAdd((0, 0, j * z_offset), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Duplicate the objects
translation_vector = [ (n-2)*a,0, 0]
rs.RotateObjects(copied_objects, [0, 0, 1.0], 90.0)
rs.MoveObjects(copied_objects, translation_vector)
for j in range(m):
translation_vector = rs.VectorAdd((0, 0, j * z_offset), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Duplicate the objects
translation_vector = [ (n-2)*a,0, 0]
rs.RotateObjects(copied_objects, [0, 0, 1.0], 90.0)
rs.MoveObjects(copied_objects, translation_vector)
for j in range(m):
translation_vector = rs.VectorAdd((0, 0, j * z_offset), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(all_objects)
##T-SECTIONS
point1 = rs.AddPoint(0.0, 0.0, 0.0)
point2 = rs.AddPoint(-a / 2, 0.0, -(a / 2) * math.tan(1.5708 - theta1 - theta2))
point3 = rs.AddPoint(a / 2, 0.0, -(a / 2) * math.tan(1.5708 - theta1 - theta2))
point4 = rs.AddPoint(0.0, 0.0, (a / 2) * math.tan(1.5708 - theta1)-(a / 2) * math.tan(1.5708 - theta1 - theta2))
cylinder1 = rs.AddCylinder(point2, point4, beam_radius)
cylinder2 = rs.AddCylinder(point4, point3, beam_radius)
cylinder3 = rs.AddCylinder(point3, point1, beam_radius)
cylinder4 = rs.AddCylinder(point1, point2, beam_radius)
# Create spheres at the nodes of part1
node1 = rs.AddSphere(point1, beam_radius)
node2 = rs.AddSphere(point2, beam_radius)
node3 = rs.AddSphere(point3, beam_radius)
node4 = rs.AddSphere(point4, beam_radius)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder2),
rs.CopyObject(cylinder3),
rs.CopyObject(node3), rs.CopyObject(node4)]
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(copied_objects, [0, 0, 0], 90.0)
# Group the original and rotated geometry
all_objects = [cylinder1, cylinder2, cylinder3, cylinder4, node1, node2, node3, node4] + copied_objects
group_name = rs.AddGroup()
rs.AddObjectsToGroup(all_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(all_objects)
translation_vector = [ 0,-a, 0]
rs.MoveObjects(unioned_objects, translation_vector)
for i in range(n-1):
for j in range(m):
translation_vector = rs.VectorAdd((i * x_offset, 0, j * z_offset), (0, 0, 0))
rs.CopyObjects(unioned_objects, translation_vector)
rs.AddObjectsToGroup(unioned_objects, group_name)
#Rotate and Translate
translation_vector = [ (n-2)*a,0, 0]
rs.RotateObjects(unioned_objects, [0, 0, 1.0], 90.0)
rs.MoveObjects(unioned_objects, translation_vector)
for i in range(n-1):
for j in range(m):
translation_vector = rs.VectorAdd((0, i * y_offset, j * z_offset), (0, 0, 0))
rs.CopyObjects(unioned_objects, translation_vector)
rs.AddObjectsToGroup(unioned_objects, group_name)
#Rotate and Translate
translation_vector = [ (n-2)*a,0, 0]
rs.RotateObjects(unioned_objects, [0, 0, 1.0], 90.0)
rs.MoveObjects(unioned_objects, translation_vector)
for i in range(n-1):
for j in range(m):
translation_vector = rs.VectorAdd((-i * x_offset, 0, j * z_offset), (0, 0, 0))
rs.CopyObjects(unioned_objects, translation_vector)
rs.AddObjectsToGroup(unioned_objects, group_name)
#Rotate and Translate
translation_vector = [(n-2)*a,0, 0]
rs.RotateObjects(unioned_objects, [0, 0, 1.0], 90.0)
rs.MoveObjects(unioned_objects, translation_vector)
for i in range(n-1):
for j in range(m):
translation_vector = rs.VectorAdd((0, -i * y_offset, j * z_offset), (0, 0, 0))
rs.CopyObjects(unioned_objects, translation_vector)
rs.AddObjectsToGroup(unioned_objects, group_name)
temp=unioned_objects+copied_objects
##TOP LAYER
#Individual beams around
point1 = rs.AddPoint(0, -a, (m)*z_offset)
point2 = rs.AddPoint(-a/2, -a, (m)*z_offset-(a / 2) * math.tan(1.5708 - theta1 - theta2))
point3 = rs.AddPoint(-a/2, -a, (m)*z_offset-(a / 2) * math.tan(1.5708 - theta1 - theta2))
point4 = rs.AddPoint(0, -a, (m)*z_offset+(a / 2) * math.tan(1.5708 - theta1)-(a / 2) * math.tan(1.5708 - theta1 - theta2))
cylinder3 = rs.AddCylinder(point3, point1, beam_radius)
cylinder4 = rs.AddCylinder(point1, point2, beam_radius)
node2 = rs.AddSphere(point2, beam_radius)
node3 = rs.AddSphere(point3, beam_radius)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder3), rs.CopyObject(cylinder4),rs.CopyObject(node3)]
for i in range(n):
for y in range(n+1):
translation_vector = rs.VectorAdd((i * x_offset, y * y_offset, 0), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(copied_objects)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder3), rs.CopyObject(cylinder4),rs.CopyObject(node2)]
## Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(copied_objects, [0, 0, 0], 90.0)
for i in range(n+1):
for y in range(n):
translation_vector = rs.VectorAdd((i * x_offset-2*a, y * y_offset, 0), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(copied_objects)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder3), rs.CopyObject(cylinder4)]
## Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(copied_objects, [0, 0, 0], 180)
for i in range(n):
for y in range(n+1):
translation_vector = rs.VectorAdd((i * x_offset-a, y * y_offset-2*a, 0), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(copied_objects)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder3), rs.CopyObject(cylinder4)]
## Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(copied_objects, [0, 0, 0], 270)
for i in range(n+1):
for y in range(n):
translation_vector = rs.VectorAdd((i * x_offset, y * y_offset-a, 0), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(copied_objects)
## BOTTOM LAYER
point1 = rs.AddPoint(0.0, 0.0, 0.0)
point2 = rs.AddPoint(-(math.tan(theta1))*(1+(a/2)*math.tan(1.5708-theta1-theta2)), 0.0, -(1+(a / 2) * math.tan(1.5708 - theta1 - theta2)+stubL)-2.0)
point3 = rs.AddPoint((math.tan(theta1))*(1+(a/2)*math.tan(1.5708-theta1-theta2)), 0.0, -(1+(a / 2) * math.tan(1.5708 - theta1 - theta2)+stubL)-2.0)
point4 = rs.AddPoint(0.0, 0.0, 0.0)
cylinder1 = rs.AddCylinder(point2, point4, beam_radius)
cylinder2 = rs.AddCylinder(point4, point3, beam_radius)
# Define the dimensions of the box
w = n*a+2*a # Length along the X-axis
r = n*a+2*a # Width along the Y-axis
z = -(1+(a / 2) * math.tan(1.5708 - theta1 - theta2)+stubL) # Height along the Z-axis
# Define the corner points of the box in counter-clockwise order
corner1 = (-2*a, -2*a, z)
corner2 = (w, -2*a, z)
corner3 = (w, r, z)
corner4 = (-2*a, r, z)
corner5 = (-2*a, -2*a, z-5.0)
corner6 = (w, -2*a, z-5.0)
corner7 = (w, r, z-5.0)
corner8 = (-2*a, r, z-5.0)
box = rs.AddBox([corner1, corner2, corner3, corner4, corner5, corner6, corner7, corner8])
cylinder1=rs.BooleanDifference(cylinder1,box)
box = rs.AddBox([corner1, corner2, corner3, corner4, corner5, corner6, corner7, corner8])
cylinder2=rs.BooleanDifference(cylinder2,box)
# Duplicate the objects
copied_objects = [rs.CopyObject(cylinder1), rs.CopyObject(cylinder2)]
for i in range(n-1):
for y in range(n+1):
translation_vector = rs.VectorAdd((i * x_offset, y * y_offset-a, 0), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(copied_objects, [0, 0, 0], 90.0)
# Group the original and rotated geometry
all_objects = copied_objects
group_name = rs.AddGroup()
rs.AddObjectsToGroup(all_objects, group_name)
# Union all objects to create a solid
unioned_objects = rs.BooleanUnion(all_objects)
translation_vector = [ 0,0, 0]
rs.MoveObjects(unioned_objects, translation_vector)
for i in range(n+1):
for j in range(n-1):
translation_vector = rs.VectorAdd((i * x_offset-a, j * y_offset, 0), (0, 0, 0))
rs.CopyObjects(unioned_objects, translation_vector)
rs.AddObjectsToGroup(unioned_objects, group_name)
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(cylinder1, [0, 0, 0], 180)
translation_vector = [ 0,0, 0]
rs.MoveObjects(cylinder2, translation_vector)
for j in range(n+1):
translation_vector = rs.VectorAdd((x_offset-2*a, j * y_offset-a, 0), (0, 0, 0))
rs.CopyObjects(cylinder1, translation_vector)
rs.AddObjectsToGroup(cylinder1, group_name)
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(cylinder1, [0, 0, 0], 180)
translation_vector = [ 0,0, 0]
rs.MoveObjects(cylinder2, translation_vector)
for j in range(n+1):
translation_vector = rs.VectorAdd((n*a-a, j * y_offset-a, 0), (0, 0, 0))
rs.CopyObjects(cylinder1, translation_vector)
rs.AddObjectsToGroup(cylinder1, group_name)
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(cylinder1, [0, 0, 0], 90)
translation_vector = [ 0,0, 0]
rs.MoveObjects(cylinder2, translation_vector)
for j in range(n+1):
translation_vector = rs.VectorAdd((j * x_offset-a, (n-1)*a,0), (0, 0, 0))
rs.CopyObjects(cylinder1, translation_vector)
rs.AddObjectsToGroup(cylinder1, group_name)
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(cylinder1, [0, 0, 0], 180)
translation_vector = [ 0,0, 0]
rs.MoveObjects(cylinder2, translation_vector)
for j in range(n+1):
translation_vector = rs.VectorAdd((j * x_offset-a, -a,0), (0, 0, 0))
rs.CopyObjects(cylinder1, translation_vector)
rs.AddObjectsToGroup(cylinder1, group_name)
copied_objects=rs.BooleanUnion(cylinder1, cylinder2)
## TOP LAYER
point1 = rs.AddPoint(-a/2, 0.0, m*z_offset-(a / 2) * math.tan(1.5708 - theta1 - theta2))
point2 = rs.AddPoint(-a/2-(math.tan(theta1))*(1+(a/2)*math.tan(1.5708-theta1-theta2)), 0.0, m*z_offset+(1+(a / 2) * math.tan(1.5708 - theta1 - theta2)+stubL)-(a / 2) * math.tan(1.5708 - theta1 - theta2)+2.0)
point3 = rs.AddPoint(-a/2+(math.tan(theta1))*(1+(a/2)*math.tan(1.5708-theta1-theta2)), 0.0, m*z_offset+(1+(a / 2) * math.tan(1.5708 - theta1 - theta2)+stubL)-(a / 2) * math.tan(1.5708 - theta1 - theta2)+2.0)
point4 = rs.AddPoint(-a/2, 0.0, m*z_offset-(a / 2) * math.tan(1.5708 - theta1 - theta2))
cylinder1 = rs.AddCylinder(point2, point4, beam_radius)
cylinder2 = rs.AddCylinder(point4, point3, beam_radius)
# Define the dimensions of the box
w = n*a+2*a # Length along the X-axis
r = n*a+2*a # Width along the Y-axis
z = m*z_offset+(1+(a / 2) * math.tan(1.5708 - theta1 - theta2)+stubL)-(a / 2) * math.tan(1.5708 - theta1 - theta2) # Height along the Z-axis
# Define the corner points of the box in counter-clockwise order
corner1 = (-2*a, -2*a, z)
corner2 = (w, -2*a, z)
corner3 = (w, r, z)
corner4 = (-2*a, r, z)
corner5 = (-2*a, -2*a, z+5.0)
corner6 = (w, -2*a, z+5.0)
corner7 = (w, r, z+5.0)
corner8 = (-2*a, r, z+5.0)
box = rs.AddBox([corner1, corner2, corner3, corner4, corner5, corner6, corner7, corner8])
copied_objects=rs.BooleanDifference([cylinder1, cylinder2],box)
# Duplicate the objects
for i in range(n):
for y in range(n+1):
translation_vector = rs.VectorAdd((i * x_offset, y * y_offset-a, 0), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
copied_objects=rs.BooleanUnion(copied_objects)
# Rotate the copied geometry 90 degrees around the Z-axis
rs.RotateObjects(copied_objects, [0, 0, 0], 90)
# Duplicate the objects
for i in range(n+1):
for y in range(n):
translation_vector = rs.VectorAdd((i * x_offset-a, y * y_offset, 0), (0, 0, 0))
rs.CopyObjects(copied_objects, translation_vector)
rs.AddObjectsToGroup(copied_objects, group_name)
##SOLID UNION ALL
rs.Command('_SelDup')
rs.Command('_Delete')
rs.BooleanUnion(copied_objects)
obj =rs.ObjectsByType(1,True)
rs.DeleteObjects(obj)
obj =rs.ObjectsByType(16)
obj=rs.BooleanUnion(obj)
all_objects = rs.AllObjects()
obj=rs.BooleanUnion(all_objects)
print("Truss Volume in mm3", rs.coercebrep(rs.ObjectsByType(16)).GetVolume())
# Specify the object to save
object_id = rs.AllObjects()
object_count = len(object_id)
print('Object count',object_count)
##-------------------------------------------------------------------------------------------##
##END OF SCRIPT
##-------------------------------------------------------------------------------------------##