-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsignal _classify.py
379 lines (296 loc) · 12 KB
/
signal _classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
import time
# R
data_41 = pd.read_csv(open('./data/41.csv')) # R类信号源
r_singal_name = data_41.ix[:, '信号源名称']
r_1 = data_41.ix[:, 'RA_1_1']
r_2 = data_41.ix[:, 'RA_1_2']
r_3 = data_41.ix[:, 'RA_2_1']
r_4 = data_41.ix[:, 'RA_2_2']
r_5 = data_41.ix[:, 'RA_3_1']
r_6 = data_41.ix[:, 'RA_3_2']
r_7 = data_41.ix[:, 'RA_4_1']
r_8 = data_41.ix[:, 'RA_4_2']
r_all = [r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8]
for i in r_all:
for j in range(len(i)):
try:
i[j] = sum([float(k) for k in i[j].split(',')])
except:
pass
R = {} # 特征值:项和
for i in range(len(r_singal_name)):
R[r_singal_name[i]] = r_1[i] + r_2[i] + r_3[i] + r_4[i] + r_5[i] + r_6[i] + r_7[i] + r_8[i]
r_values = [j for i, j in R.items()]
r_values.sort()
plt.plot(r_values)
plt.xlabel('R信号种类')
plt.ylabel('特征值')
plt.title('R类信号源中25种特征值对比(升序)')
plt.legend(loc='best')
plt.show()
diff_r_values = []
for i in range(len(r_values) - 1):
diff_r_values.append(abs(r_values[i + 1] - r_values[i]))
diff_r_values.sort()
print(diff_r_values)
plt.plot(diff_r_values)
plt.xlabel('R信号种类')
plt.ylabel('特征值差值')
plt.title('R类信号源中25种特征值相差值对比(最小的24个差值升序排列)')
plt.legend(loc='best')
plt.show()
head = ['差值']
df = pd.DataFrame(diff_r_values, columns=head)
df.to_csv("./data/R类信号源中24种特征值相差值对比(最小的24个差值升序排列).csv", encoding="utf-8", index = False)
# L1
data_42 = pd.read_csv(open('./data/42.csv')) # L1类信号源
l1_singal_name = data_42.ix[:, '信号源名称']
l1_1 = data_42.ix[:, 'L1A_1']
l1_2 = data_42.ix[:, 'L1A_2']
l1_3 = data_42.ix[:, 'L1A_3']
l1_all = [l1_1, l1_2, l1_3]
L1 = {} # 特征值:项和
for i in range(len(l1_singal_name)):
L1[l1_singal_name[i]] = l1_1[i] + l1_2[i] + l1_3[i]
l1_values = [j for i, j in L1.items()]
l1_values.sort()
plt.plot(l1_values)
plt.xlabel('L1信号种类')
plt.ylabel('特征值')
plt.title('L1类信号源中21种特征值对比(升序)')
plt.legend(loc='best')
plt.show()
diff_l1_values = []
for i in range(len(l1_values) - 1):
diff_l1_values.append(abs(l1_values[i + 1] - l1_values[i]))
diff_l1_values.sort()
plt.plot(diff_l1_values)
plt.xlabel('L1信号种类')
plt.ylabel('特征值差值')
plt.title('L1类信号源中21种特征值相差值对比(最小的20个差值升序排列)')
plt.legend(loc='best')
plt.show()
head = ['差值']
df = pd.DataFrame(diff_l1_values, columns=head)
df.to_csv("./data/L1类信号源中21种特征值相差值对比(最小的20个差值升序排列).csv", encoding="utf-8", index = False)
# L2
data_43 = pd.read_csv(open('./data/43.csv')) # L2类信号源
l2_singal_name = data_43.ix[:, '信号源名称']
l2_1 = data_43.ix[:, 'L2A_1']
l2_2 = data_43.ix[:, 'L2A_2']
l2_3 = data_43.ix[:, 'L2A_3']
l2_all = [l2_1, l2_2, l2_3]
L2 = {} # 特征值:项和
for i in range(len(l2_singal_name)):
L2[l2_singal_name[i]] = l2_1[i] + l2_2[i] + l2_3[i]
l2_values = [j for i, j in L2.items()]
l2_values.sort()
plt.plot(l2_values)
plt.xlabel('L2信号种类')
plt.ylabel('特征值')
plt.title('L2类信号源中21种特征值对比(升序)')
plt.legend(loc='best')
plt.show()
diff_l2_values = []
for i in range(len(l2_values) - 1):
diff_l2_values.append(abs(l2_values[i + 1] - l2_values[i]))
diff_l2_values.sort()
plt.plot(diff_l2_values)
plt.xlabel('L2信号种类')
plt.ylabel('特征值差值')
plt.title('L2类信号源中21种特征值相差值对比(最小的20个差值升序排列)')
plt.legend(loc='best')
plt.show()
head = ['差值']
df = pd.DataFrame(diff_l2_values, columns=head)
df.to_csv("./data/L2类信号源中21种特征值相差值对比(最小的20个差值升序排列).csv", encoding="utf-8", index = False)
# A
data_44 = pd.read_csv(open('./data/44.csv')) # A类信号源
a_singal_name = data_44.ix[:, '信号源名称']
a_1 = data_44.ix[:, 'MMSI编号']
A = {} # 特征值:MMSI编号
for i in range(len(a_singal_name)):
A[a_singal_name[i]] = a_1[i]
# 船舶
data_3 = pd.read_csv(open('./data/3.csv')) # 船舶携带信号种类
ship_name = data_3.ix[:, '船舶名称']
ship_number = data_3.ix[:, '船舶编号']
ship_name_number_dic = {i: j for i, j in zip(ship_name,ship_number)}
ship_number_name_dic = {j: i for i, j in ship_name_number_dic.items()}
s_1 = data_3.ix[:, 'R类信号源1']
s_2 = data_3.ix[:, 'R类信号源2']
s_3 = data_3.ix[:, 'R类信号源3']
s_4 = data_3.ix[:, 'LI1类信号源']
s_5 = data_3.ix[:, 'L2类信号源']
s_6 = data_3.ix[:, 'A类信号源']
S = {}
for i in range(len(ship_number)):
S[ship_number[i]] = [s_1[i], s_2[i], s_3[i], s_4[i], s_5[i], s_6[i]]
# 待分类目标
data_51 = pd.read_csv(open('./data/51.csv')) # 目标R类信号源
data_52 = pd.read_csv(open('./data/52.csv')) # 目标L1类信号源
data_53 = pd.read_csv(open('./data/53.csv')) # 目标L2类信号源
data_54 = pd.read_csv(open('./data/54.csv')) # 目标A类信号源
## 读取R信号特征值
signal_number_1 = data_51.ix[:, '信号源批号']
target_number_1 = data_51.ix[:, '目标编号']
name_dic_r = {i: j for i, j in zip(signal_number_1, target_number_1)}
target_r_1 = data_51.ix[:, 'RA_1_1']
target_r_2 = data_51.ix[:, 'RA_1_2']
target_r_3 = data_51.ix[:, 'RA_2_1']
target_r_4 = data_51.ix[:, 'RA_2_2']
target_r_5 = data_51.ix[:, 'RA_3_1']
target_r_6 = data_51.ix[:, 'RA_3_2']
target_r_7 = data_51.ix[:, 'RA_4_1']
target_r_8 = data_51.ix[:, 'RA_4_2']
target_r_all = [target_r_1, target_r_2, target_r_3, target_r_4, target_r_5, target_r_6, target_r_7, target_r_8]
for i in target_r_all:
for j in range(len(i)):
try:
i[j] = sum([float(k) for k in i[j].split(',')])
except:
pass
target_R = {} # 特征值:项和
for i in range(len(signal_number_1)):
target_R[signal_number_1[i]] = target_r_1[i] + target_r_2[i] + target_r_3[i] + target_r_4[i] + target_r_5[i] + target_r_6[i] + target_r_7[i] + target_r_8[i]
## 读取L1信号特征值
signal_number_2 = data_52.ix[:, '信号源批号']
target_number_2 = data_52.ix[:, '目标编号']
name_dic_l1 = {i: j for i, j in zip(signal_number_2, target_number_2)}
target_l1_1 = data_52.ix[:, 'L1A_1']
target_l1_2 = data_52.ix[:, 'L1A_2']
target_l1_3 = data_52.ix[:, 'L1A_3']
target_L1 = {} # 特征值:项和
for i in range(len(signal_number_2)):
target_L1[signal_number_2[i]] = target_l1_1[i] + target_l1_2[i] + target_l1_3[i]
## 读取L2信号特征值
signal_number_3 = data_53.ix[:, '信号源批号']
target_number_3 = data_53.ix[:, '目标编号']
name_dic_l2 = {i: j for i, j in zip(signal_number_3, target_number_3)}
target_l2_1 = data_53.ix[:, 'L2A_1']
target_l2_2 = data_53.ix[:, 'L2A_2']
target_l2_3 = data_53.ix[:, 'L2A_3']
target_L2 = {} # 特征值:项和
for i in range(len(signal_number_3)):
target_L2[signal_number_3[i]] = target_l2_1[i] + target_l2_2[i] + target_l2_3[i]
## 读取A信号特征值
signal_number_4 = data_54.ix[:, '信号源批号']
target_number_4 = data_54.ix[:, '目标编号']
name_dic_a = {i: j for i, j in zip(signal_number_4, target_number_4)}
target_a_1 = data_54.ix[:, 'MMSI编号']
target_A = {} # 特征值:MMSI编号
for i in range(len(signal_number_4)):
target_A[signal_number_4[i]] = target_a_1[i]
# 目标分类 30,4,2
features = [target_R, target_L1, target_L2, target_A]
## 检测R
r_result = []
for number, r_value in target_R.items():
exist_r_signal = []
for r_name, r_real_value in R.items():
if abs(r_value - r_real_value) <= 30:
exist_r_signal.append(r_name)
exist_r_signal = list(set(exist_r_signal)) # 剔除重复
exist_ship_number = []
for i in exist_r_signal:
for s_number, s_signals in S.items():
for signal in s_signals:
if i == signal:
exist_ship_number.append(s_number)
exist_ship_number = list(set(exist_ship_number))
r_result.append(exist_ship_number)
r_number_result_dic = {i: j for i, j in zip(signal_number_1, r_result)}
# refer to name_dic_r
## 检测L1
l1_result = []
for number, l1_value in target_L1.items():
exist_l1_signal = []
for l1_name, l1_real_value in L1.items():
if abs(l1_value - l1_real_value) <= 4:
exist_l1_signal.append(l1_name)
exist_l1_signal = list(set(exist_l1_signal)) # 剔除重复
exist_ship_number = []
for i in exist_l1_signal:
for s_number, s_signals in S.items():
for signal in s_signals:
if i == signal:
exist_ship_number.append(s_number)
exist_ship_number = list(set(exist_ship_number))
l1_result.append(exist_ship_number)
l1_number_result_dic = {i: j for i, j in zip(signal_number_2, l1_result)}
# refer to name_dic_l1
## 检测L2
l2_result = []
for number, l2_value in target_L2.items():
exist_l2_signal = []
for l2_name, l2_real_value in L2.items():
if abs(l2_value - l2_real_value) <= 2:
exist_l2_signal.append(l2_name)
exist_l2_signal = list(set(exist_l2_signal)) # 剔除重复
exist_ship_number = []
for i in exist_l2_signal:
for s_number, s_signals in S.items():
for signal in s_signals:
if i == signal:
exist_ship_number.append(s_number)
exist_ship_number = list(set(exist_ship_number))
l2_result.append(exist_ship_number)
l2_number_result_dic = {i: j for i, j in zip(signal_number_3, l2_result)}
# refer to name_dic_l2
## 检测A
a_result = []
for number, a_value in target_A.items():
exist_a_signal = []
for a_name, a_real_value in A.items():
if a_value == a_real_value:
exist_a_signal.append(a_name)
exist_a_signal = list(set(exist_a_signal)) # 剔除重复
exist_ship_number = []
for i in exist_a_signal:
for s_number, s_signals in S.items():
for signal in s_signals:
if i == signal:
exist_ship_number.append(s_number)
exist_ship_number = list(set(exist_ship_number))
a_result.append(exist_ship_number)
a_number_result_dic = {i: j for i, j in zip(signal_number_4, a_result)}
# refer to name_dic_a
# 按目标编号取交集
target_number = list(set(list(target_number_1) + list(target_number_2) + list(target_number_3) + list(target_number_4)))
number_result_dic = {**r_number_result_dic, **l1_number_result_dic, **l2_number_result_dic, **a_number_result_dic}
name_dic = {**name_dic_r, **name_dic_l1, **name_dic_l2, **name_dic_a}
name_number_dic = {} # 101: [1011, 1012, 1013, 1014, 1015]
for i in target_number:
name_number_dic[i] = []
for j, k in name_dic.items():
if i == k:
name_number_dic[i].append(j)
final_result = {} # {目标编号:[[],[],[]]}
for i, j in name_number_dic.items():
final_result[i] = []
for k in j:
if number_result_dic[k] != []:final_result[i].append(number_result_dic[k])
intersection = 1
for i, j in final_result.items():
if len(j) > 1:
# intersection = None
for k in range(len(j) - 1):
intersection = set(j[k]) & set(j[k + 1])
final_result[i] = list(intersection)
else:
final_result[i] = final_result[i][0]
final_result_number = final_result
print('按船舶编号输出的分类结果:')
print(final_result_number)
final_result_name = final_result
for i, j in final_result_name.items():
for k in range(len(j)):
final_result_name[i][k] = ship_number_name_dic[j[k]]
print('按船舶名称输出的分类结果:')
print(final_result_name)
print('程序运行结束,15秒后自动关闭窗口。')
time.sleep(15)