-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
82 lines (69 loc) · 2.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import scipy.sparse as sp
import numpy as np
import torch
from sklearn.metrics import accuracy_score
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo(), d_inv_sqrt
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def decide_device(args):
if args.use_gpu:
if torch.cuda.is_available():
if not args.easy_copy:
print("Use CUDA")
device = torch.device("cuda")
else:
if not args.easy_copy:
print("CUDA not avaliable, use CPU instead")
device = torch.device("cpu")
else:
if not args.easy_copy:
print("Use CPU")
device = torch.device("cpu")
return device
def generate_train_val(args, train_size, train_pro=0.9):
real_train_size = int(train_pro*train_size)
val_size = train_size-real_train_size
if args.shuffle_seed!=None:
np.random.seed(args.shuffle_seed)
idx_train = np.random.choice(train_size, real_train_size,replace=False)
idx_train.sort()
idx_val = []
pointer = 0
for v in range(train_size):
if pointer<len(idx_train) and idx_train[pointer] == v:
pointer +=1
else:
idx_val.append(v)
return idx_train, idx_val
def generate_train_val(args, train_size, train_pro=0.9):
real_train_size = int(train_pro*train_size)
val_size = train_size-real_train_size
if args.shuffle_seed!=None:
np.random.seed(args.shuffle_seed)
idx_train = np.random.choice(train_size, real_train_size,replace=False)
idx_train.sort()
idx_val = []
pointer = 0
for v in range(train_size):
if pointer<len(idx_train) and idx_train[pointer] == v:
pointer +=1
else:
idx_val.append(v)
return idx_train, idx_val
def cal_accuracy(predictions,labels):
pred = torch.argmax(predictions,-1).cpu().tolist()
lab = labels.cpu().tolist()
return accuracy_score(lab,pred)