-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAxioms.v
53 lines (43 loc) · 2.12 KB
/
Axioms.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Selected axioms from Axioms.v in CompCert for Integers benchmark *)
(** This file collects some axioms used throughout the CompCert development. *)
Add LoadPath "coq".
Require ClassicalFacts.
(** * Extensionality axioms *)
(** The following [Require Export] gives us functional extensionality for dependent function types:
<<
Axiom functional_extensionality_dep : forall {A} {B : A -> Type},
forall (f g : forall x : A, B x),
(forall x, f x = g x) -> f = g.
>>
and, as a corollary, functional extensionality for non-dependent functions:
<<
Lemma functional_extensionality {A B} (f g : A -> B) :
(forall x, f x = g x) -> f = g.
>>
*)
Require Import FunctionalExtensionality.
(** We also assert propositional extensionality. *)
Axiom prop_ext: ClassicalFacts.prop_extensionality.
Arguments prop_ext : default implicits.
(** * Proof irrelevance *)
(** We also use proof irrelevance, which is a consequence of propositional
extensionality. *)
Lemma proof_irr: ClassicalFacts.proof_irrelevance.
Proof.
exact (ClassicalFacts.ext_prop_dep_proof_irrel_cic prop_ext).
Qed.
Arguments proof_irr : default implicits.