-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution.py
231 lines (197 loc) · 7.58 KB
/
solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from collections import Counter
import re
assignments = []
# diagonal_sudoku True to play by diagonal sudoku rules or False for normal sudoku rules
DIAGONAL_SUDOKU = True
def assign_value(values, box, value):
"""
Use this function to update values dictionary!
Assigns a value to a given box. If it updates the board record it.
"""
# Don't waste memory appending actions that don't actually change any values
if values[box] == value:
return values
values[box] = value
if len(value) == 1:
assignments.append(values.copy())
return values
def naked_twins(values):
"""Eliminate values using the naked twins strategy.
Args:
values(dict): a dictionary of the form {'box_name': '123456789', ...}
Returns:
the values dictionary with the naked twins eliminated from peers.
"""
for unit in unitlist:
unitvalues = [values[box] for box in unit]
# Find all instances of naked twins
two_duplicate_digits = [boxVal for boxVal, count in Counter(unitvalues).items() if
count == 2 and len(boxVal) == 2]
# Eliminate the naked twins as possibilities for their peers
for duplicate in two_duplicate_digits:
remove_digits = duplicate[0] + '|' + duplicate[1]
for box in unit:
if duplicate != values[box]:
assign_value(values, box, re.sub(remove_digits, '', values[box]))
return values
def cross(A, B):
"""Cross product of elements in A and elements in B."""
return [s + t for s in A for t in B]
rows = 'ABCDEFGHI'
cols = '123456789'
"""
Terminology:
Sudoku puzzle consists of a 9x9 grid of "boxes"
Sudoku puzzle contains 9 3x3 units (which are non-overlaping)
The peers of a box are the boxes in the row/column/diagonal/3x3 unit it belongs to
"""
boxes = cross(rows, cols)
row_units = [cross(r, cols) for r in rows]
column_units = [cross(rows, c) for c in cols]
square_units = [cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI') for cs in ('123', '456', '789')]
diagonal_units = []
diagonal_units = [s + t for (s, t) in zip(rows, cols)]
diagonal_units = [diagonal_units] + [[s + t for (s, t) in zip(reversed(rows), cols)]]
if DIAGONAL_SUDOKU:
unitlist = row_units + column_units + square_units + diagonal_units
else: # "Normal" Sudoku
unitlist = row_units + column_units + square_units
units = dict((s, [u for u in unitlist if s in u]) for s in boxes)
peers = dict((s, set(sum(units[s], [])) - {s}) for s in boxes)
def grid_values(grid):
"""
Convert grid into a dict of {square: char} with '123456789' for empties.
Args:
grid(string) - A grid in string form.
Returns:
A grid in dictionary form
Keys: The boxes, e.g., 'A1'
Values: The value in each box, e.g., '8'. If the box has no value, then the value will be '123456789'.
"""
chars = []
digits = '123456789'
for c in grid:
if c in digits:
chars.append(c)
if c == '.':
chars.append(digits)
assert len(chars) == 81
return dict(zip(boxes, chars))
def display(values):
"""
Display the values as a 2-D grid.
Args:
values(dict): The sudoku in dictionary form
Returns:
None
"""
width = 1 + max(len(values[s]) for s in boxes)
line = '+'.join(['-' * (width * 3)] * 3)
for r in rows:
print(''.join(values[r + c].center(width) + ('|' if c in '36' else '') for c in cols))
if r in 'CF': print(line)
return
def eliminate(values):
"""
Go through all the boxes, and whenever there is a box with a value, eliminate this value from the
values of all its peers.
Args:
A sudoku in dictionary form.
Returns:
The resulting sudoku in dictionary form.
"""
solved_values = [box for box in values.keys() if len(values[box]) == 1]
for box in solved_values:
digit = values[box]
for peer in peers[box]:
assign_value(values, peer, values[peer].replace(digit, ''))
return values
def only_choice(values):
"""
Go through all the units, and whenever there is a unit with a value that only fits in one box,
assign the value to this box.
Args:
A sudoku in dictionary form.
Returns:
The resulting sudoku in dictionary form.
"""
for unit in unitlist:
for digit in '123456789':
dplaces = [box for box in unit if digit in values[box]]
if len(dplaces) == 1:
# values[dplaces[0]] = digit
assign_value(values, dplaces[0], digit)
return values
def reduce_puzzle(values):
"""
Iterate eliminate() and only_choice(). If at some point, there is a box with no available values,
return False. If the sudoku is solved, return the sudoku. If after an interation of both functions,
the sudoku remains the same, return the sudoku.
Args:
A sudoku in dictionary form.
Returns:
The resulting sudoku in dictionary form.
"""
stalled = False
while not stalled:
# Check how many boxes have a determined value
solved_values_before = len([box for box in values.keys() if len(values[box]) == 1])
# Use the Eliminate Strategy
values = eliminate(values)
# Use the Only Choice Strategy
values = only_choice(values)
# Use the Naked Twins Strategy
values = naked_twins(values)
# Check how many boxes have a determined value to compare
solved_values_after = len([box for box in values.keys() if len(values[box]) == 1])
# If no new values were added stop the loop
stalled = solved_values_before == solved_values_after
# Sanity check, return False if there is a box with zero available values
if len([box for box in values.keys() if len(values[box]) == 0]):
return False
return values
def search(values):
"""
Using depth-first search and propagation, try all possible values.
Args:
A sudoku in dictionary form.
Returns:
The resulting sudoku in dictionary form.
"""
# First, reduce the puzzle using the constraint propagation strategies
values = reduce_puzzle(values)
if values is False:
return False # Failed earlier
if all(len(values[s]) == 1 for s in boxes):
return values # Solved
# Choose one of the unfilled squares with the fewest possibilities
n, s = min((len(values[s]), s) for s in boxes if len(values[s]) > 1)
# Now using recurrence to solve each one of the resulting sudokus,
# and if one returns a value (not False), return the answer.
for value in values[s]:
new_sudoku = values.copy()
new_sudoku[s] = value
attempt = search(new_sudoku)
if attempt:
return attempt
def solve(grid):
"""
Find the solution to a Sudoku grid.
Args:
grid(string): a string representing a sudoku grid.
Example: '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
Returns:
The dictionary representation of the final sudoku grid. False if no solution exists.
"""
values = grid_values(grid)
return search(values)
if __name__ == '__main__':
diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3'
display(solve(diag_sudoku_grid))
try:
from visualize import visualize_assignments
visualize_assignments(assignments)
except SystemExit:
pass
except:
print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.')