-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbl.c
83 lines (69 loc) · 2.26 KB
/
dbl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/* Copyright 2008-2019 Douglas Wikstrom
*
* This file is part of Verificatum Elliptic Curve library (VEC).
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <gmp.h>
#include "vec.h"
#define t1 scratch->t1
#define t2 scratch->t2
#define s scratch->t3
#define modulus curve->modulus
#define a curve->a
void
vec_dbl(vec_scratch_mpz_t scratch,
mpz_t rx, mpz_t ry,
vec_curve *curve,
mpz_t x, mpz_t y)
{
/* If this is the unit point or its own inverse, then return the
unit point. */
if (mpz_cmp_si(x, -1) == 0 || mpz_cmp_si(y, 0) == 0)
{
mpz_set_si(rx, -1);
mpz_set_si(ry, -1);
return;
}
/* s = (3x^2 + a) / 2y */
mpz_mul(t1, x, x);
mpz_mod(t1, t1, modulus);
mpz_mul_ui(t1, t1, 3);
mpz_add(t1, t1, a);
mpz_mod(t1, t1, modulus);
mpz_mul_ui(t2, y, 2);
mpz_invert(t2, t2, modulus);
mpz_mul(s, t1, t2);
mpz_mod(s, s, modulus);
/* rx = s^2 - 2x */
mpz_mul(t1, s, s);
mpz_mul_ui(t2, x, 2);
mpz_sub(t1, t1, t2);
/* ry = s(x - rx) - y */
mpz_sub(t2, x, t1);
mpz_mul(t2, s, t2);
mpz_sub(t2, t2, y);
/* We assign the destination parameters in the end to allow them to
be identical to the inputs. */
mpz_mod(rx, t1, modulus);
mpz_mod(ry, t2, modulus);
return;
}