-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
159 lines (121 loc) · 5.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
from random import shuffle
import tensorflow as tf
# from tensorflow.data import Dataset, Iterator
data = tf.data
Dataset = data.Dataset
Iterator = data.Iterator
import pandas as pd
NUM_CLASSES = 2
def read_attr_file( attr_path, image_dir):
f = open(attr_path)
lines = f.readlines()
lines = list(map(lambda line: line.strip(), lines))
columns = ['image_path'] + lines[1].split()
lines = lines[2:]
items = list(map(lambda line: line.split(), lines))
df = pd.DataFrame(items, columns=columns)
df['image_path'] = df['image_path'].map(lambda x: os.path.join(image_dir, x))
return df
def get_celebA_files(dataset_path, attribute, test=False, n_test=200):
attr_file = os.path.join(dataset_path, 'list_attr_celebs.txt')
image_dir = os.path.join(dataset_path, 'celebA')
image_data = read_attr_file(attr_file, image_dir)
# first_row = image_data.iloc[0].values
poz_data = image_data[image_data[attribute] == '1']['image_path'].values
neg_data = image_data[image_data[attribute] == '-1']['image_path'].values
return poz_data, neg_data
def input_parser(img_path, label):
# convert the label to one-hot encoding
# one_hot = tf.one_hot(label, NUM_CLASSES)
# read the img from file
img = tf.map_fn(lambda x: tf.read_file(x), img_path)
img_decoded = tf.map_fn(lambda x: tf.image.decode_jpeg(x, channels=3), img, dtype=tf.uint8)
img_resized = tf.map_fn(lambda x: tf.image.resize_image_with_crop_or_pad(x, 128, 128), img_decoded)
img_float = tf.map_fn(lambda x: tf.to_float(x), img_resized, dtype=tf.float32)
img_normalized = tf.map_fn(lambda x: (2.0 / 255.0) * x - 1.0, img_float)
return img_normalized, label
def get_input(dataset_path, batch_size, for_training = True):
poz_imgs, neg_imgs = get_celebA_files(dataset_path, 'Eyeglasses')
if for_training:
shuffle(poz_imgs)
shuffle(neg_imgs)
dataset_len = min(len(poz_imgs), len(neg_imgs))
# Get image paths
poz_train_imgs = tf.constant(poz_imgs[:dataset_len])
poz_train_labels = tf.constant([1] * dataset_len, dtype=tf.int32)
neg_train_imgs = tf.constant(neg_imgs[:dataset_len])
neg_train_labels = tf.constant([0] * dataset_len, dtype=tf.int32)
# create TensorFlow Dataset objects
poz_data = Dataset.from_tensor_slices((poz_train_imgs, poz_train_labels))
neg_data = Dataset.from_tensor_slices((neg_train_imgs, neg_train_labels))
if for_training:
poz_data = poz_data.shuffle(dataset_len).repeat()
neg_data = neg_data.shuffle(dataset_len).repeat()
poz_data = poz_data.batch(batch_size)
neg_data = neg_data.batch(batch_size)
poz_data = poz_data.map(input_parser)
neg_data = neg_data.map(input_parser)
# create TensorFlow Iterator object for images with POSITIVE attribute value
iterator_poz = Iterator.from_structure(poz_data.output_types,
poz_data.output_shapes)
# iterator_poz = poz_data.make_initializable_iterator()
# iterator_neg = neg_data.make_initializable_iterator()
next_element_poz = iterator_poz.get_next()
# create TensorFlow Iterator object for images with NEGATIVE attribute value
iterator_neg = Iterator.from_structure(neg_data.output_types,
neg_data.output_shapes)
next_element_neg = iterator_neg.get_next()
# create two initialization ops to switch between the datasets
poz_init_op = iterator_poz.make_initializer(poz_data)
neg_init_op = iterator_neg.make_initializer(neg_data)
# poz_init_op = iterator_poz.initializer
# neg_init_op = iterator_neg.initializer
tensor_dict = {
"init_ops": [poz_init_op, neg_init_op],
"next_element_poz": next_element_poz,
"next_element_neg": next_element_neg,
}
return tensor_dict
def test_input():
poz_imgs, neg_imgs = get_celebA_files('../data/', 'Eyeglasses')
shuffle(poz_imgs)
shuffle(neg_imgs)
dataset_len = min(len(poz_imgs), len(neg_imgs))
# Get image paths
poz_train_imgs = tf.constant(poz_imgs[:dataset_len])
poz_train_labels = tf.constant([1] * dataset_len)
neg_train_imgs = tf.constant(neg_imgs[:dataset_len])
neg_train_labels = tf.constant([0] * dataset_len)
# create TensorFlow Dataset objects
poz_data = Dataset.from_tensor_slices((poz_train_imgs, poz_train_labels)).shuffle(dataset_len).repeat()
neg_data = Dataset.from_tensor_slices((neg_train_imgs, neg_train_labels)).shuffle(dataset_len).repeat()
# poz_data = poz_data.map(input_parser)
# neg_data = neg_data.map(input_parser)
# create TensorFlow Iterator object for images with POSITIVE attribute value
iterator_poz = Iterator.from_structure(poz_data.output_types,
poz_data.output_shapes)
next_element_poz = iterator_poz.get_next()
# create TensorFlow Iterator object for images with NEGATIVE attribute value
iterator_neg = Iterator.from_structure(neg_data.output_types,
neg_data.output_shapes)
next_element_neg = iterator_neg.get_next()
# create two initialization ops to switch between the datasets
poz_init_op = iterator_poz.make_initializer(poz_data)
neg_init_op = iterator_neg.make_initializer(neg_data)
with tf.Session() as sess:
# initialize the iterator on the training data
sess.run(poz_init_op)
sess.run(neg_init_op)
# get each element of the training dataset until the end is reached
while True:
try:
elem_poz = sess.run(next_element_poz)
elem_neg = sess.run(next_element_neg)
print(elem_neg)
print(elem_poz)
except tf.errors.OutOfRangeError:
print("End of training dataset.")
break
if __name__ == '__main__':
test_input()