-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
50 lines (45 loc) · 1.75 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from setuptools import setup, find_packages
import os
base_dir = os.path.dirname(__file__)
with open(os.path.join(base_dir, "README.md")) as f:
long_description = f.read()
setup(
name="veda_lib",
version="0.0.5",
author="Vishal Maurya",
author_email="vishallmaurya210@gmail.com",
description="veda_lib is a Python library designed to streamline the data preprocessing and cleaning workflow for machine learning projects. It offers a comprehensive set of tools to handle common data preparation tasks",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/vishallmaurya/VEDA",
license="Apache License 2.0",
packages=find_packages(where='src'),
package_dir={'': 'src'},
classifiers=[
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
],
keywords=["Automated Data Preprocessing", "Data Cleaning", "Data Balancing", "Machine Learning",
"Data Transformation", "Feature Engineering", "Data Wrangling", "Data Preparation",
"Exploratory Data Analysis"],
project_urls={
"Bug Tracker": "https://github.com/vishallmaurya/VEDA/issues",
},
python_requires=">=3.9",
install_requires=[
"numpy>=1.21.0",
"pandas>=1.3.0",
"scikit-learn>=0.24.0",
"imbalanced-learn>=0.8.0",
"tensorflow>=2.4.0",
"umap-learn>=0.5.0",
"optuna>=2.7.0",
"statsmodels>=0.12.0",
"diptest>=0.1.0",
],
include_package_data=True, # Includes files from MANIFEST.in
zip_safe=False, # Whether the package can be distributed as a .zip file
)