-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
executable file
·430 lines (356 loc) · 19.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import pandas as pd
from BasicRecommenders.CollaborativeFiltering import CollaborativeFiltering
from BasicRecommenders.ContentBasedFiltering import ContentBasedFiltering
from BasicRecommenders.RevisedCBF import RevisedCBF
from BasicRecommenders.SVDRecommender import SVDRecommender
from CFandCBF.FW_Similarity.Cython.CFW_D_Similarity_Cython import CFW_D_Similarity_Cython
from BasicRecommenders.RP3beta import RP3betaRecommender
from HybridRecommenders.ListHybridRecommender import ListHybridRecommender
from HybridRecommenders.PupulationHybrid import PopulationHybrid
from HybridRecommenders.UserItemHybridRecommender import UserItemHybridRecommender
from BasicRecommenders.LightFMRecommender import LightFMRecommender
from BasicRecommenders.P3alpha import P3alpha
from MatrixFactorization.MatrixFactorization_BPR_Theano import MatrixFactorization_BPR_Theano
from MatrixFactorization.MatrixFactorization_RMSE import BPRMF, AsySVD, IALS_numpy
from MatrixFactorization.PureSVD import PureSVDRecommender
from RecKit.ICM import ICM
from RecKit.URM import URM
from RecKit.evaluation_tools import evaluate_algorithm
from RecKit.generate_output import generate_output
from sklearn.model_selection import train_test_split
from HybridRecommenders.ItemItemHybridRecommender import IIHybridRecommender
from RecKit.getURMThreshold import getURMThreshold
from SLIM_BPR.Slim_Elastic_Net import Slim_Elastic_Net
from SLIM_BPR2.Cython.SLIM_BPR_Cython import SLIM_BPR_Cython
from BasicRecommenders.XGBoostRecommender import XGBoostRecommender
Kaggle=False
if Kaggle==True:
interactionsCsv = pd.read_csv("../input/train.csv")
targetList = pd.read_csv("../input/target_playlists.csv").iloc[:,0]
tracksCsv = pd.read_csv("../input/tracks.csv")
else:
interactionsCsv = pd.read_csv("input/train.csv")
targetList = pd.read_csv("input/target_playlists.csv").iloc[:,0]
tracksCsv = pd.read_csv("input/tracks.csv")
print(interactionsCsv.describe())
icm = ICM(tracksCsv, col="artist")
icm2 = ICM(tracksCsv, col="album")
urm_full = URM(interactionsCsv)
X_train, X_test = train_test_split(interactionsCsv, test_size =0.05, random_state=17)
urm_train = URM(X_train)
urm_test = URM(X_test)
# Transposed matrix
X_train_t = X_train[['track_id', 'playlist_id']]
X_test_t = X_train_t[['track_id', 'playlist_id']]
urm_full_t = URM(interactionsCsv[['track_id', 'playlist_id']], transposed=True)
urm_test_t = URM(X_test_t, transposed=True)
urm_train_t = URM(X_train_t, transposed=True)
"""
RUNNING SCRIPT PARAMETERS
"""
submission = False; htype = "als"
if submission == True:
urm = urm_full
urm_t = urm_full_t
else:
urm = urm_train
urm_t = urm_train_t
if htype == "pophyb":
group_1_2_TH = getURMThreshold(urm, 20)
group_1_params = {'user_weight': 0.4, 'item_weight': 0.4, 'cbf_weight': 0.14, 'cbf2_weight': 0.1,
'slim_weight': 0.14, 'svd_weight': 0.11}
group_2_params = {'user_weight': 0.23, 'item_weight': 0.325, 'cbf_weight': 0.15, 'cbf2_weight': 0.10,
'slim_weight': 0.335, 'svd_weight': 0.13}
param_dict = {'n_groups': 2, 'group_1_params': group_1_params, 'group_2_params': group_2_params,
'group_1_2_TH': group_1_2_TH}
phy = PopulationHybrid(urm, urm_t, icm, icm2, enable_dict, param_dict, urm_test=urm_test)
if submission:
recommended_items = phy.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
print("Evaluating")
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, phy)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.5f}".format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "uii":
print("Fitting hybrid recommender")
enable_dict = {'enableSVD' : True, 'enableSLIM' : True,
'enableCBF2' : True, 'enableP3A' : False,
'enableLFM' : False, 'enableRP3B' : True}
hr = UserItemHybridRecommender(urm, urm_t, icm, icm2, enable_dict, urm_test=urm_test)
print("Mixing predictions")
"""
Recommender, performance is:
Hybrid 0.4, 0.4, 0.14, 0.10, 0.13, 0.13
Precision = 0.0265, Recall = 0.2266, MAP = 0.10524 -> 0.09091 Server
v2 Precision = 0.0270, Recall = 0.2317, MAP = 0.10661 (23) -> 0.9114 Server
5 epoch v2 Precision = 0.0269, Recall = 0.2301, MAP = 0.10549 (23) ->
v2 Precision = 0.0267, Recall = 0.2315, MAP = 0.10540 (17) -> 0.9114 Server
0.4, 0.4, 0.140, 0.140, 0.110, 0.110
Precision = 0.0267, Recall = 0.2288, MAP = 0.10515
0.4, 0.4, 0.145, 0.135, 0.110, 0.110
Precision = 0.0267, Recall = 0.2286, MAP = 0.10521
0.455, 0.345, 0.145, 0.135, 0.110, 0.110
Precision = 0.0268, Recall = 0.2300, MAP = 0.10525 -> 0.09065 Server
Hybrid_v2 0.4, 0.4, 0.14, 0.10, 0.13, 0.13 -> Local 0.10540 Server 0.09114
0.23 0.4 0.14 0.10 0.28 0.11 -> Local 0.10637 Server 0.09171
0.23 0.325 0.15 0.1 0.335 0.13 -> Local 0.10728 Server 0.09189 Precision = 0.0270, Recall = 0.2336
Local 0.10792 Server 0.09168 Precision = 0.0272, Recall = 0.2354
Only user Precision = 0.0231, Recall = 0.1980, MAP = 0.09100
Only Item Precision = 0.0234, Recall = 0.2003, MAP = 0.09222
CBF1 Precision = 0.0106, Recall = 0.0917, MAP = 0.04316 -> TFIDF 0.042966
CBF2 Precision = 0.0080, Recall = 0.0710, MAP = 0.02609 -> TFIDF 0.025113
SLIM Precision = 0.0193, Recall = 0.1666, MAP = 0.07331
SLIM_v2 Precision = 0.0254, Recall = 0.2176, MAP = 0.09889
SVD Precision = 0.0193, Recall = 0.1626, MAP = 0.06996 -> 0.06154 Server
P3Alpha Precision = 0.0250, Recall = 0.2150, MAP = 0.09708
RP3Beta Precision = 0.0256, Recall = 0.2190, MAP = 0.10122
"""
"Precision = 0.0276, Recall = 0.2365, MAP = 0.11065"
weights_dict = {'user_weight': 0.23, 'item_weight': 0.125,
'cbf_weight': 0.15, 'cbf2_weight': 0.1,
'slim_weight': 0.335, 'p3a_weight': 0.0,
'lfm_weight': 0.33, 'rp3b_weight': 0.355,
'svd_weight': 0.1}
hr.fit(weights_dict, method='rating_weight', norm='max')
if submission:
recommended_items = hr.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
print("Evaluating")
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, hr)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.5f}".format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "ii":
hr = IIHybridRecommender(urm, icm, icm2)
hr.fit(item_weight=0.4, cbf1_weight=0.25, cbf2_weight=0.1)
if submission:
recommended_items = hr.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, hr)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.5f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "icbf":
cb = RevisedCBF(icm.getCSR(), urm.getCSR(), sparse_weights=True)
cb.fit(topK=50, shrink=10, similarity='cosine', normalize=True, feature_weighting = "TF-IDF") # artist
if submission:
recommended_items = cb.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, cb)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "cbf":
cbf = ContentBasedFiltering(icm2, urm, k=15, shrinkage=0)
cbf.fit()
if submission:
recommended_items = cbf.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, cbf)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "slim":
slim = SLIM_BPR_Cython(urm.getCSR(), recompile_cython=False, positive_threshold=0, URM_validation=urm_test.getCSR(),
final_model_sparse_weights=True, train_with_sparse_weights=False)
logFile = open("SLIM_BPR_Cython.txt", "a")
parameters={'epochs':10, 'validation_every_n':99,'logFile':logFile, 'batch_size':1, 'topK':200,
'sgd_mode':"rmsprop", 'learning_rate':0.1, 'gamma':0.995, 'beta_1':0., 'beta_2':0.0}
slim.fit(**parameters)
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, slim)
logFile2 = open("SLIM_BPR_CythonTestCases.txt", "a")
logFile2.write("Test case: {}, Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}\n".format(parameters,
cumulative_precision.mean(),
cumulative_recall.mean(),
cumulative_MAP.mean()))
logFile2.flush()
# with open('slim_test.pkl', 'wb') as output:
# pickle.dump(slim, output, pickle.HIGHEST_PROTOCOL)
# cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, slim)
# print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
# .format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "slim_en":
slimen = Slim_Elastic_Net(urm.getCSR())
slimen.fit(l1_penalty=0.1, l2_penalty=0.1, positive_only=True, topK=100)
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, slimen)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "svd":
svd = SVDRecommender(urm, nf=385)
print(type(svd.s_recommend(0)))
# cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, svd)
# print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
# .format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="cbu":
enable_dict = {'enableSVD': False, 'enableSLIM': True, 'enableUSER': True}
cbu = CollaborativeFiltering()
cbu.fit(urm_t, k=100, h=0, mode='user')
if submission:
recommended_items = cbu.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, cbu)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="cbi":
cbi = CollaborativeFiltering()
cbi.fit(urm, k=100, h=0, mode='item')
if submission:
recommended_items = cbi.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, cbi)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="lhr":
enable_dict = {'enableSVD': True, 'enableSLIM': True, 'enableUSER': True, 'enableP3A': True}
weights_dict = {'item_item_weight': 1.3, 'svd_weight': 0.24, 'slim_weight': 1.2, 'user_weight': 1.1,
'p3a_weight': 1.1}
lhr = ListHybridRecommender(urm, urm_t, icm, icm2, enable_dict, urm_test)
lhr.fit(weights_dict, norm="max", w_method='parab')
if submission:
recommended_items = lhr.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
#lhr.fit(weights_dict, norm="max", w_method='parab')
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, lhr)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="p3a":
p3alpha = P3alpha(urm.getCSR())
p3alpha.fit(topK=80, alpha=1, min_rating=0, implicit=True, normalize_similarity=True)
print(type(p3alpha.s_recommend(0)))
if submission:
recommended_items = p3alpha.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, p3alpha)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="cfw":
cbi = CollaborativeFiltering()
cbi.fit(urm, k=100, h=0, mode='item')
fw_parameters = {'epochs': 200,
'learning_rate': 0.01,
'sgd_mode': 'adam',
'add_zeros_quota': 1.0,
'l1_reg': 0.1,
'l2_reg': 0.01,
'topK': 100,
'use_dropout': False,
'dropout_perc': 0.7,
'init_type': 'TF-IDF',
'positive_only_weights': True,
'normalize_similarity': True}
cfw = CFW_D_Similarity_Cython(urm.getCSR(), icm.getCSR(), cbi.cosineSimilarityMatrix.copy())
cfw.fit(**fw_parameters, validation_metric="MAP")
if submission:
recommended_items = cfw.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, cfw)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="rp3b":
cf_parameters = {'topK': 80,
'alpha': 1,
'beta': 0.275,
'normalize_similarity': True,
'implicit': True,
'norm': 'l1'}
rp3b = RP3betaRecommender(urm.getCSR())
rp3b.fit(**cf_parameters)
if submission:
recommended_items = rp3b.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, rp3b)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="lfm":
lfm = LightFMRecommender()
lfm.fit(urm.getCSR(), epochs=100)
if submission:
recommended_items = lfm.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, lfm)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="xgb":
enable_dict = {'enableSVD': False, 'enableSLIM': False, 'enableLFM': False, 'enableP3A': False}
xgb = XGBoostRecommender(urm, urm_t, icm, icm2, enable_dict, urm_test)
#xgb.fit(urm, epochs=100)
if submission:
recommended_items = xgb.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, xgb)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype=="psvd":
psvd = PureSVDRecommender(urm.getCSR())
psvd.fit(num_factors=225, n_iters=10)
if submission:
recommended_items = psvd.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, psvd)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "bprmf":
mf = BPRMF(num_factors=50, lrate=0.01, iters=10)
mf.fit(urm.getCSR())
if submission:
recommended_items = mf.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, mf)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "asy":
mf = AsySVD(num_factors=50, lrate=0.01, reg=0.015, iters=10)
mf.fit(urm.getCSR())
if submission:
recommended_items = mf.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, mf)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "als":
#225
mf = IALS_numpy(num_factors=300,
reg=0.015,
iters=10,
scaling='linear',
alpha=40,
epsilon=1.0,
init_mean=0.0,
init_std=0.1)
mf.fit(urm.getCSR())
if submission:
recommended_items = mf.m_recommend(targetList, nRec=10)
generate_output(targetList, recommended_items)
else:
cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, mf)
print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
.format(cumulative_precision, cumulative_recall, cumulative_MAP))
elif htype == "theano":
n_users, n_items = urm.getCSR().shape
theano = MatrixFactorization_BPR_Theano(10, n_users, n_items)
subset = X_train[['playlist_id', 'track_id']]
tuples = [tuple(x) for x in subset.values]
print(tuples[0])
theano.train(tuples)
test = X_test[['playlist_id', 'track_id']]
test_tuples = [tuple(x) for x in test.values]
theano.test(test_tuples)
# if submission:
# recommended_items = theano.m_recommend(targetList, nRec=10)
# generate_output(targetList, recommended_items)
# else:
# cumulative_precision, cumulative_recall, cumulative_MAP = evaluate_algorithm(urm_test, theano)
# print("Recommender, performance is: Precision = {:.4f}, Recall = {:.4f}, MAP = {:.6f}"
# .format(cumulative_precision, cumulative_recall, cumulative_MAP))
else:
print("choice not supported")