-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path5. LDAonsubsamples.R
134 lines (98 loc) · 3.67 KB
/
5. LDAonsubsamples.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
require(data.table)
require(dplyr)
require(lubridate)
require(tm)
prepare_prosp <- function(text){
require(qdapDictionaries)
require(stringr)
text <- tolower(text)
text <- gsub("\\d+", "", text)
text <- unlist(str_extract_all(text, "\\w+"))
text <- text[text %in% GradyAugmented]
text <- text[str_length(text) > 2]
text <- text[!text %in% c(stopwords("english"))]
text <- paste0(text, collapse = " ")
return(text)
}
get.dict <- function(texts, cutoff = 5)
{
library(tidyverse)
x <- data_frame(text = texts) %>%
mutate(text = tolower(text)) %>%
mutate(text = str_remove_all(text, '[[:punct:]]')) %>%
mutate(tokens = str_split(text, "\\s+")) %>%
unnest() %>%
count(tokens) %>%
#filter(!tokens %in% stop_words) %>%
mutate(freq = n / sum(n)) %>%
arrange(desc(n))
x <- x[x$n >= 50,]
return(x$tokens)
}
exclude_rare <- function(text, dict){
require(stringr)
text <- text %>%
strsplit(.," ") %>%
unlist
text <- text[text %in% dict]
text <- paste0(text, collapse = " ")
return(text)
}
run.lda <- function(sample, n.topics, outname, dtm.name)
{
alltexts <- lapply(sample$texts, prepare_prosp)
dict <- alltexts %>%
get.dict
alltexts <- lapply(alltexts, function(x) exclude_rare(x,dict))
alltexts <- unlist(alltexts)
#create corpus from vector
docs <- alltexts %>% tolower %>% VectorSource %>% Corpus
#remove stopwords
docs <- tm_map(docs, removeWords, stopwords("english"))
#remove whitespace
docs <- tm_map(docs, stripWhitespace)
#Stem document
require(SnowballC)
docs <- tm_map(docs, stemDocument)
#Create document-term matrix
dtm <- DocumentTermMatrix(docs)
#convert rownames to filenames
rownames(dtm) <- sample$document_number
ui = unique(dtm$i)
dtm = dtm[ui,]
saveRDS(dtm, dtm.name)
require(topicmodels)
#Set parameters for Gibbs sampling
k <- n.topics
burnin <- 100
iter <- 600
thin <- 200
seed <-list(2003,5,63,100001,765)
nstart <- 5
best <- TRUE
start <- Sys.time()
print(start)
ldaOut <-LDA(dtm,k, method="Gibbs", control=list(nstart=nstart, seed = seed, best=best,
burnin = burnin, iter = iter, thin=thin))
end <- Sys.time()
print(end - start)
saveRDS(ldaOut, outname)
}
outfolder <- "/Users/evolkova/Dropbox/Projects/Govt Agenda/Sandbox/20200820/LDA.raw.output/"
yr <- 2010
subsample <- yr %>%
paste0("/Users/evolkova/Dropbox/Projects/Govt Agenda/Data/Master and Texts/",.,".rds") %>%
readRDS
run.lda(subsample, 25, "lda_year2010_topics25.rds" %>% paste0(outfolder,.), "dtm_year2010_topics25.rds" %>% paste0(outfolder,.))
run.lda(subsample, 50, "lda_year2010_topics50.rds" %>% paste0(outfolder,.), "dtm_year2010_topics50.rds" %>% paste0(outfolder,.))
yr <- 2017
subsample <- yr %>%
paste0("/Users/evolkova/Dropbox/Projects/Govt Agenda/Data/Master and Texts/",.,".rds") %>%
readRDS
run.lda(subsample, 25, "lda_year2017_topics25.rds" %>% paste0(outfolder,.), "dtm_year2017_topics25.rds" %>% paste0(outfolder,.))
run.lda(subsample, 50, "lda_year2017_topics50.rds" %>% paste0(outfolder,.), "dtm_year2017_topics50.rds" %>% paste0(outfolder,.))
subsample <- "/Users/evolkova/Dropbox/Projects/Govt Agenda/Data/Master and Texts/random_sample.rds" %>%
readRDS
run.lda(subsample, 25, "lda_random_sample_topics25.rds" %>% paste0(outfolder,.), "dtm_random_sample_topics25.rds" %>% paste0(outfolder,.))
run.lda(subsample, 50, "lda_random_sample_topics50.rds" %>% paste0(outfolder,.), "dtm_random_sample_topics50.rds" %>% paste0(outfolder,.))
run.lda(subsample, 100, "lda_random_sample_topics100.rds" %>% paste0(outfolder,.), "dtm_random_sample_topics100.rds" %>% paste0(outfolder,.))