-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
48 lines (45 loc) · 1.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# -*- coding: utf-8 -*-
from keras.models import Sequential
from keras.layers import Dense, Activation, Reshape
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D, Conv2D, MaxPooling2D
from keras.layers.advanced_activations import LeakyReLU, ELU
from keras.optimizers import Adam
from keras.layers import Flatten, Dropout
def generator(input_dim=100,units=1024,activation='relu'):
model = Sequential()
model.add(Dense(input_dim=input_dim, units=units))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(Dense(128*7*7))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(Reshape((7, 7, 128), input_shape=(128*7*7,)))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(64, (5, 5), padding='same'))
model.add(BatchNormalization())
model.add(Activation(activation))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(1, (5, 5), padding='same'))
model.add(Activation('tanh'))
print(model.summary())
return model
def discriminator(input_shape=(28, 28, 1),nb_filter=64):
model = Sequential()
model.add(Conv2D(nb_filter, (5, 5), strides=(2, 2), padding='same',
input_shape=input_shape))
model.add(BatchNormalization())
model.add(ELU())
model.add(Conv2D(2*nb_filter, (5, 5), strides=(2, 2)))
model.add(BatchNormalization())
model.add(ELU())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(4*nb_filter))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(ELU())
model.add(Dense(1))
model.add(Activation('sigmoid'))
print(model.summary())
return model