We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
#install.packages("ggplot2") #install.packages("ggpubr") #install.packages("ggExtra")
library(ggplot2) library(ggpubr) library(ggExtra)
setwd("D:\biowolf\panCancer\20.estimateCor") #设置工作目录 pFilter=0.001 #设置p值过滤条件
#读取表达文件 exp=read.table("singleGeneExp.txt", header=T,sep="\t",row.names=1,check.names=F) gene=colnames(exp)[1] #读取肿瘤微环境文件 TME=read.table("estimateScores.txt", header=T,sep="\t",row.names=1,check.names=F) #去除正常样品 group=sapply(strsplit(row.names(exp),"\-"),"[",4) group=sapply(strsplit(group,""),"[",1) group=gsub("2","1",group) exp=exp[group==0,] #样品取交集 sameSample=intersect(row.names(TME),row.names(exp)) TME=TME[sameSample,] exp=exp[sameSample,]
#相关性检验 outTab=data.frame() #按肿瘤类型循环 for(i in levels(exp[,"CancerType"])){ exp1=exp[(exp[,"CancerType"]==i),] TME1=TME[(TME[,"CancerType"]==i),] y=as.numeric(exp1[,1]) outVector=data.frame(i,gene) #按微环境打分循环 for(j in colnames(TME1)[1:2]){ x=as.numeric(TME1[,j]) df1=as.data.frame(cbind(x,y)) corT=cor.test(x,y,method="spearman") cor=corT$estimate pValue=corT$p.value outVector=cbind(outVector,pValue) p1=ggplot(df1, aes(x, y)) + xlab(j)+ylab(gene)+ ggtitle(paste0("Cancer: ",i))+theme(title=element_text(size=10))+ geom_point()+ geom_smooth(method="lm") + theme_bw()+ stat_cor(method = 'spearman', aes(x =x, y =y)) p2=ggMarginal(p1, type = "density", xparams = list(fill = "orange"),yparams = list(fill = "blue")) if(pValue<pFilter){ pdf(file=paste0("estimateCor.",i,"_",j,".pdf"),width=5,height=5) print(p2) dev.off() } } outTab=rbind(outTab,outVector) } colNames=c("CancerType","Gene",colnames(TME)[1:2]) colnames(outTab)=colNames write.table(outTab,file="estimateCor.result.txt",sep="\t",row.names=F,quote=F)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
#install.packages("ggplot2")
#install.packages("ggpubr")
#install.packages("ggExtra")
library(ggplot2)
library(ggpubr)
library(ggExtra)
setwd("D:\biowolf\panCancer\20.estimateCor") #设置工作目录
pFilter=0.001 #设置p值过滤条件
#读取表达文件
exp=read.table("singleGeneExp.txt", header=T,sep="\t",row.names=1,check.names=F)
gene=colnames(exp)[1]
#读取肿瘤微环境文件
TME=read.table("estimateScores.txt", header=T,sep="\t",row.names=1,check.names=F)
#去除正常样品
group=sapply(strsplit(row.names(exp),"\-"),"[",4)
group=sapply(strsplit(group,""),"[",1)
group=gsub("2","1",group)
exp=exp[group==0,]
#样品取交集
sameSample=intersect(row.names(TME),row.names(exp))
TME=TME[sameSample,]
exp=exp[sameSample,]
#相关性检验
outTab=data.frame()
#按肿瘤类型循环
for(i in levels(exp[,"CancerType"])){
exp1=exp[(exp[,"CancerType"]==i),]
TME1=TME[(TME[,"CancerType"]==i),]
y=as.numeric(exp1[,1])
outVector=data.frame(i,gene)
#按微环境打分循环
for(j in colnames(TME1)[1:2]){
x=as.numeric(TME1[,j])
df1=as.data.frame(cbind(x,y))
corT=cor.test(x,y,method="spearman")
cor=corT$estimate
pValue=corT$p.value
outVector=cbind(outVector,pValue)
p1=ggplot(df1, aes(x, y)) +
xlab(j)+ylab(gene)+
ggtitle(paste0("Cancer: ",i))+theme(title=element_text(size=10))+
geom_point()+ geom_smooth(method="lm") + theme_bw()+
stat_cor(method = 'spearman', aes(x =x, y =y))
p2=ggMarginal(p1, type = "density", xparams = list(fill = "orange"),yparams = list(fill = "blue"))
if(pValue<pFilter){
pdf(file=paste0("estimateCor.",i,"_",j,".pdf"),width=5,height=5)
print(p2)
dev.off()
}
}
outTab=rbind(outTab,outVector)
}
colNames=c("CancerType","Gene",colnames(TME)[1:2])
colnames(outTab)=colNames
write.table(outTab,file="estimateCor.result.txt",sep="\t",row.names=F,quote=F)
The text was updated successfully, but these errors were encountered: