-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbitaobyte.py
162 lines (126 loc) · 4.89 KB
/
bitaobyte.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 10 13:57:43 2019
@author: Microtc
"""
from keras.datasets import mnist
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten
from keras import backend as K
#from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import Dropout
import numpy as np
import cv2
import sys
import os
import time
#print("ZERO")
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print("Numero de classes")
print(np.unique(y_train))
x_train = x_train.reshape(60000,28, 28, 1)
x_test = x_test.reshape(10000,28,28, 1)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
global num_pixels
num_pixels = x_train.shape[1] * x_train.shape[2]
model_name = str(sys.argv[0]).split(".")[0]+".h5"
batch_size = 32 #menos exemplos, mais updates
num_classes = 10
epochz = 6 #Nao precisa mais que 1 epoch para o MNIST. Evite overfitting
global density
density = 128
def img_to_array(img, image_data_format='default'):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.bitwise_not(img)
if image_data_format == "default":
image_data_format = K.image_data_format()
if image_data_format not in ['channels_first', 'channels_last']:
raise Exception('Unknown image_data_format: ', image_data_format)
x = np.asarray(img, dtype=K.floatx())
# colored image
# (channel, height, width)
if len(x.shape) == 3:
if image_data_format == 'channels_first':
x = x.transpose(2, 0, 1)
# grayscale
elif len(x.shape) == 2:
# already for th format
x = np.expand_dims(x, axis=0)
if image_data_format == 'channels_last':
# (height, width, channel)
#o canal esta no 2. estranho, mas...
#(height, channel, width)
x = x.reshape((x.shape[1], x.shape[2], x.shape[0]))
#print("CHANNEL")
#print(x.shape[2])
# unknown
else:
raise Exception('Unsupported image shape: ', x.shape)
return x
def base_model():
model = Sequential()
# add model layers
model.add(Conv2D(64, kernel_size=3, activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(15, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
#se nao tem argumento para o programa, faz o treino e salva o model com o nome do script python
if len(sys.argv) == 1:
cnn_n = base_model()
cnn_n.summary()
cnn = cnn_n.fit(x_train, y_train, batch_size=batch_size, epochs=epochz, validation_data=(x_test,y_test),shuffle=True)
cnn_n.save_weights(model_name, overwrite=True)
scores = cnn_n.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1] * 100))
#se tiver argumento, faz predicao do diretorio de imagem passado como parametro
else:
if not os.path.isdir(sys.argv[1]):
print("Directory not found. Exiting...")
exit(0)
#faz loop nos arquivos e limpa oa nomes pra nao ter LF
directory = sys.argv[1]
files = os.listdir(directory)
files = [w.replace("\n", "") for w in files]
#print(files)
#se for diretorio vazio, sai sem dar erro
if len(files) < 1:
print("There is no files in \'"+directory+"\' directory. Exiting...")
exit(0)
#...mas se tiver arquivos, deve fazer predicao
cnn_n = base_model()
cnn_n.load_weights(model_name)
font = cv2.FONT_HERSHEY_SIMPLEX
#ler imagens de um diretorio e redimensionar para o padrao do MNIST
for filename in files:
print(filename)
img = cv2.imread(directory + "/" +filename)
img = cv2.resize(img, (28, 28), 1)
xxx = img_to_array(img)
#print(str(xxx.shape))
xxx = np.expand_dims(xxx, axis=0)
#print(str(xxx))
start_t = time.time()
res = cnn_n.predict(xxx, verbose=0)
print("res.argmax e res 0 argmax")
print(res.argmax())
print(res[0][res.argmax()])
#print(res[0])
detected = res.argmax()
print(round(res[0][res.argmax()]*100))
imgRead = cv2.imread(directory + "/" + filename, cv2.IMREAD_GRAYSCALE)
cv2.putText(imgRead, str(res.argmax()), (2, 22), font, 1, (100, 100, 100), 2, cv2.LINE_AA)
cv2.imshow("MINIST", imgRead)
pressed = cv2.waitKey(0)
if pressed == 27:
exit(0)
cv2.destroyAllWindows()