-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
60 lines (54 loc) · 2.24 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import tensorflow as tf
def margin_loss(onehot_labels, lengths, m_plus=0.9, m_minus=0.1, l=0.5):
T = tf.to_float(onehot_labels)
lengths = tf.to_float(lengths)
L_present = T*tf.square(tf.nn.relu(m_plus - lengths))
L_absent = (1-T)*tf.square(tf.nn.relu(lengths - m_minus))
L = L_present + l*L_absent
return tf.losses.compute_weighted_loss(tf.reduce_sum(L, axis=1))
def reconstruction_loss(inputs, reconstruction):
inputs_flat = tf.layers.Flatten()(inputs)
return tf.losses.mean_squared_error(inputs_flat, reconstruction)
def mask_one(capsule_vectors, mask, is_predicting=False):
if is_predicting:
indices = tf.argmax(mask, axis=1)
mask = tf.one_hot(indices=tf.cast(indices, tf.int32), depth=10)
return tf.layers.flatten(capsule_vectors*tf.expand_dims(mask,-1), name="MaskedDigitCaps")
def decoder_nn(capsule_features, name="reconstruction"):
if(name == None):
name1, name2, name3 = None, None, None
else:
name1, name2, name3 = name+"1", name+"2", name+"3"
fc1 = tf.layers.dense(capsule_features, 512, activation=tf.nn.relu, name=name1)
fc2 = tf.layers.dense(fc1, 1024, activation=tf.nn.relu, name=name2)
reconstruction = tf.layers.dense(fc2, 784, activation=tf.nn.sigmoid, name=name3)
return reconstruction
def reconMashup(inputs, pred, pics_per_line=10):
assert len(inputs) == len(pred), "need as many predictions as inputs"
assert 2*(len(inputs))%pics_per_line == 0
lines = int((2*len(inputs))/pics_per_line)
h_pic = inputs[0].shape[0]
w_pic = inputs[0].shape[1]
h = int(h_pic*lines + lines/2)
w = int(w_pic*pics_per_line)
out = np.zeros((h,w),dtype=np.float32)
startrow = 0
endrow = h_pic
startcol = 0
endcol = pics_per_line
i = 0
for l in range(lines):
if i%2 == 0:
out[startrow:endrow] = np.hstack(inputs[startcol:endcol])
startrow += h_pic
endrow += h_pic+1
else:
out[startrow:endrow-1] = np.hstack(pred[startcol:endcol])
startcol += pics_per_line
endcol += pics_per_line
out[endrow-1,:] = np.ones(w, dtype=np.float32)
startrow += h_pic+1
endrow += h_pic
i+=1
return out