-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
183 lines (142 loc) · 6.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# python main.py --net='LSNET' --acc=16 --data='DYNAMIC_V2_MULTICOIL' --gpu=2 --batch_size=1 --learnedSVT=True
# python main.py --net='SNET' --acc=16 --data='DYNAMIC_V2_MULTICOIL' --gpu=2 --batch_size=1
import os
import argparse
import tensorflow as tf
from model import LplusS_Net, S_Net
from dataset import get_dataset
import scipy.io as scio
import mat73
import numpy as np
from datetime import datetime
import time
from tools.tools import video_summary
from tools.tools import tempfft, mse
#tf.debugging.set_log_device_placement(True)
#os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
#tf.debugging.set_log_device_placement(True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--num_epoch', metavar='int', nargs=1, default=['50'], help='number of epochs')
parser.add_argument('--batch_size', metavar='int', nargs=1, default=['1'], help='batch size')
parser.add_argument('--learning_rate', metavar='float', nargs=1, default=['0.001'], help='initial learning rate')
parser.add_argument('--niter', metavar='int', nargs=1, default=['10'], help='number of network iterations')
parser.add_argument('--acc', metavar='int', nargs=1, default=['16'], help='accelerate rate')
parser.add_argument('--net', metavar='str', nargs=1, default=['LSNET'], help='L+S Net or S Net')
parser.add_argument('--gpu', metavar='int', nargs=1, default=['0'], help='GPU No.')
parser.add_argument('--data', metavar='str', nargs=1, default=['DYNAMIC_V2_MULTICOIL'], help='dataset name, \
DYNAMIC_V2_MULTICOIL for multi-coil dataset, DYNAMIC_V2 for single-coil dataset.')
parser.add_argument('--learnedSVT', metavar='bool', nargs=1, default=['True'], help='Learned SVT threshold or not')
args = parser.parse_args()
# GPU setup
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu[0]
GPUs = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(GPUs[0], True)
mode = 'training'
dataset_name = args.data[0].upper()
batch_size = int(args.batch_size[0])
num_epoch = int(args.num_epoch[0])
learning_rate = float(args.learning_rate[0])
acc = int(args.acc[0])
net_name = args.net[0].upper()
niter = int(args.niter[0])
learnedSVT = bool(args.learnedSVT[0])
logdir = './logs'
TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S}".format(datetime.now())
model_id = TIMESTAMP + net_name + '_' + dataset_name + str(acc)
summary_writer = tf.summary.create_file_writer(os.path.join(logdir, mode, model_id + '/'))
modeldir = os.path.join('models/', model_id)
os.makedirs(modeldir)
# prepare undersampling mask
if dataset_name == 'DYNAMIC_V2':
multi_coil = False
mask_size = '18_192_192'
elif dataset_name == 'DYNAMIC_V2_MULTICOIL':
multi_coil = True
mask_size = '18_192_192'
if dataset_name != 'DUMMY':
mask_file = 'mask/vista_' + mask_size + '_acc_' + str(acc) + '.mat'
mask = mat73.loadmat(mask_file)['mask']
else:
multi_coil = True
mask_file = 'mask/dummy_mask_8.mat'
mask = scio.loadmat(mask_file)['mask']
mask = tf.cast(tf.constant(mask), tf.complex64)
# prepare dataset
dataset = get_dataset(mode, dataset_name, batch_size, shuffle=True)
tf.print('dataset loaded.')
# initialize network
if net_name == 'LSNET':
net = LplusS_Net(mask, niter, learnedSVT)
elif net_name == 'SNET':
net = S_Net(mask, niter)
tf.print('network initialized.')
learning_rate_org = learning_rate
learning_rate_decay = 0.95
optimizer = tf.optimizers.Adam(learning_rate_org)
# Iterate over epochs.
total_step = 0
param_num = 0
loss = 0
for epoch in range(num_epoch):
for step, sample in enumerate(dataset):
# forward
t0 = time.time()
csm = None
with tf.GradientTape() as tape:
if multi_coil:
k0, label, csm = sample
if k0 == None:
continue
else:
k0, label = sample
if k0.shape[0] < batch_size:
continue
label_abs = tf.abs(label)
max_val = tf.reduce_max(label_abs)
k0 /= tf.complex(max_val, 0.0)
label /= tf.complex(max_val, 0.0)
label_abs = tf.abs(label)
k0 = k0 * mask
if net_name == 'SNET':
recon = net(k0, csm)
recon_abs = tf.abs(recon)
loss_mse = mse(recon, label)
else:
L_recon, S_recon, LSrecon = net(k0, csm)
recon = L_recon + S_recon
L_recon_abs = tf.abs(L_recon)
S_recon_abs = tf.abs(S_recon)
recon_abs = tf.abs(LSrecon)
loss_mse = mse(recon, label)
loss = loss_mse #mse ok
# backward
grads = tape.gradient(loss, net.trainable_weights)
optimizer.apply_gradients(zip(grads, net.trainable_weights))
# record loss
with summary_writer.as_default():
tf.summary.scalar('loss/total', loss_mse.numpy(), step=total_step)
# record gif
if step % 20 == 0:
with summary_writer.as_default():
if net_name == 'SNET':
combine_video = tf.concat([label_abs[0:1,:,:,:], recon_abs[0:1,:,:,:]], axis=0).numpy()
else:
combine_video = tf.concat([label_abs[0:1,:,:,:], recon_abs[0:1,:,:,:], \
L_recon_abs[0:1,:,:,:], S_recon_abs[0:1,:,:,:]], axis=0).numpy()
combine_video = np.expand_dims(combine_video, -1)
video_summary('result', combine_video, step=total_step, fps=10)
# calculate parameter number
if total_step == 0:
param_num = np.sum([np.prod(v.get_shape()) for v in net.trainable_variables])
# log output
tf.print('Epoch', epoch+1, '/', num_epoch, 'Step', step, 'loss =', loss.numpy(),
'time', time.time() - t0, 'lr = ', learning_rate, 'param_num', param_num)
total_step += 1
# learning rate decay for each epoch
learning_rate = learning_rate_org * learning_rate_decay ** (epoch + 1)
optimizer = tf.optimizers.Adam(learning_rate)
# save model each epoch
if (epoch+1) % 10 == 0:
model_epoch_dir = os.path.join(modeldir,'epoch-'+str(epoch+1), 'ckpt')
net.save_weights(model_epoch_dir, save_format='tf')