-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmain.py
242 lines (169 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchaudio.transforms import MelSpectrogram
from tqdm import tqdm
from net import SoundStream, WaveDiscriminator, STFTDiscriminator
from dataset import NSynthDataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
LAMBDA_ADV = 1
LAMBDA_FEAT = 100
LAMBDA_REC = 1
N_EPOCHS = 2
BATCH_SIZE = 4
soundstream = SoundStream(C=1, D=1, n_q=1, codebook_size=1)
wave_disc = WaveDiscriminator(num_D=3, downsampling_factor=2)
W, H = 1024, 256
stft_disc = STFTDiscriminator(C=1, F_bins=W//2)
soundstream.to(device)
wave_disc.to(device)
stft_disc.to(device)
def collate_fn(batch):
lengths = torch.tensor([elem.shape[-1] for elem in batch])
return nn.utils.rnn.pad_sequence(batch, batch_first=True), lengths
train_dataset = NSynthDataset(audio_dir="./data/nsynth-train.jsonwav/nsynth-train/audio")
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn, num_workers=2)
sr = train_dataset.sr
valid_dataset = NSynthDataset(audio_dir="./data/nsynth-valid.jsonwav/nsynth-valid/audio")
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn, num_workers=2)
test_dataset = NSynthDataset(audio_dir="./data/nsynth-test.jsonwav/nsynth-test/audio")
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, collate_fn=collate_fn, num_workers=2)
def adversarial_g_loss(features_stft_disc_G_x, features_wave_disc_G_x, lengths_stft, lengths_wave):
wave_disc_names = lengths_wave.keys()
stft_loss = F.relu(1-features_stft_disc_G_x[-1]).sum(dim=3).squeeze()/lengths_stft[-1].squeeze()
wave_loss = torch.cat([F.relu(1-features_wave_disc_G_x[key][-1]).sum(dim=2).squeeze()/lengths_wave[key][-1].squeeze() for key in wave_disc_names])
loss = torch.cat([stft_loss, wave_loss]).mean()
return loss
def feature_loss(features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x, features_wave_disc_G_x, lengths_wave, lengths_stft):
wave_disc_names = lengths_wave.keys()
stft_loss = torch.stack([((feat_x-feat_G_x).abs().sum(dim=-1)/lengths_stft[i].view(-1,1,1)).sum(dim=-1).sum(dim=-1) for i, (feat_x, feat_G_x) in enumerate(zip(features_stft_disc_x, features_stft_disc_G_x))], dim=1).mean(dim=1, keepdim=True)
wave_loss = torch.stack([torch.stack([(feat_x-feat_G_x).abs().sum(dim=-1).sum(dim=-1)/lengths_wave[key][i] for i, (feat_x, feat_G_x) in enumerate(zip(features_wave_disc_x[key], features_wave_disc_G_x[key]))], dim=1) for key in wave_disc_names], dim=2).mean(dim=1)
loss = torch.cat([stft_loss, wave_loss], dim=1).mean()
return loss
def spectral_reconstruction_loss(x, G_x, eps=1e-4):
L = 0
for i in range(6,12):
s = 2**i
alpha_s = (s/2)**0.5
melspec = MelSpectrogram(sample_rate=sr, n_fft=s, hop_length=s//4, n_mels=8, wkwargs={"device": device}).to(device)
S_x = melspec(x)
S_G_x = melspec(G_x)
loss = (S_x-S_G_x).abs().sum() + alpha_s*(((torch.log(S_x.abs()+eps)-torch.log(S_G_x.abs()+eps))**2).sum(dim=-2)**0.5).sum()
L += loss
return L
def adversarial_d_loss(features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x, features_wave_disc_G_x, lengths_stft, lengths_wave):
wave_disc_names = lengths_wave.keys()
real_stft_loss = F.relu(1-features_stft_disc_x[-1]).sum(dim=3).squeeze()/lengths_stft[-1].squeeze()
real_wave_loss = torch.stack([F.relu(1-features_wave_disc_x[key][-1]).sum(dim=-1).squeeze()/lengths_wave[key][-1].squeeze() for key in wave_disc_names], dim=1)
real_loss = torch.cat([real_stft_loss.view(-1,1), real_wave_loss], dim=1).mean()
generated_stft_loss = F.relu(1+features_stft_disc_G_x[-1]).sum(dim=-1).squeeze()/lengths_stft[-1].squeeze()
generated_wave_loss = torch.stack([F.relu(1+features_wave_disc_G_x[key][-1]).sum(dim=-1).squeeze()/lengths_wave[key][-1].squeeze() for key in wave_disc_names], dim=1)
generated_loss = torch.cat([generated_stft_loss.view(-1,1), generated_wave_loss], dim=1).mean()
return real_loss + generated_loss
optimizer_g = optim.Adam(soundstream.parameters(), lr=1e-4, betas=(0.5, 0.9))
optimizer_d = optim.Adam(list(wave_disc.parameters()) + list(stft_disc.parameters()), lr=1e-4, betas=(0.5, 0.9))
criterion_g = lambda x, G_x, features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x, features_wave_disc_G_x, lengths_wave, lengths_stft: LAMBDA_ADV*adversarial_g_loss(features_stft_disc_G_x, features_wave_disc_G_x, lengths_stft, lengths_wave) + LAMBDA_FEAT*feature_loss(features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x, features_wave_disc_G_x, lengths_wave, lengths_stft) + LAMBDA_REC*spectral_reconstruction_loss(x, G_x)
criterion_d = adversarial_d_loss
best_model = soundstream.state_dict().copy()
best_val_loss = float("inf")
history = {
"train": {"d": [], "g": []},
"valid": {"d": [], "g": []},
"test": {"d": [], "g": []}
}
for epoch in range(1, N_EPOCHS+1):
soundstream.train()
stft_disc.train()
wave_disc.train()
train_loss_d = 0.0
train_loss_g = 0.0
for x, lengths_x in tqdm(train_loader):
x = x.to(device)
lengths_x = lengths_x.to(device)
G_x = soundstream(x)
s_x = torch.stft(x.squeeze(), n_fft=1024, hop_length=256, window=torch.hann_window(window_length=1024, device=device), return_complex=False).permute(0, 3, 1, 2)
lengths_s_x = 1 + torch.div(lengths_x, 256, rounding_mode="floor")
s_G_x = torch.stft(G_x.squeeze(), n_fft=1024, hop_length=256, window=torch.hann_window(window_length=1024, device=device), return_complex=False).permute(0, 3, 1, 2)
lengths_stft = stft_disc.features_lengths(lengths_s_x)
lengths_wave = wave_disc.features_lengths(lengths_x)
features_stft_disc_x = stft_disc(s_x)
features_wave_disc_x = wave_disc(x)
features_stft_disc_G_x = stft_disc(s_G_x)
features_wave_disc_G_x = wave_disc(G_x)
loss_g = criterion_g(x, G_x, features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x, features_wave_disc_G_x, lengths_wave, lengths_stft)
train_loss_g += loss_g.item()
optimizer_g.zero_grad()
loss_g.backward()
optimizer_g.step()
features_stft_disc_x = stft_disc(s_x)
features_wave_disc_x = wave_disc(x)
features_stft_disc_G_x_det = stft_disc(s_G_x.detach())
features_wave_disc_G_x_det = wave_disc(G_x.detach())
loss_d = criterion_d(features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x_det, features_wave_disc_G_x_det, lengths_stft, lengths_wave)
train_loss_d += loss_d.item()
optimizer_d.zero_grad()
loss_d.backward()
optimizer_d.step()
history["train"]["d"].append(train_loss_d/len(train_loader))
history["train"]["g"].append(train_loss_g/len(train_loader))
with torch.no_grad():
stft_disc.eval()
wave_disc.eval()
valid_loss_d = 0.0
valid_loss_g = 0.0
for x, lengths_x in tqdm(valid_loader):
x = x.to(device)
lengths_x = lengths_x.to(device)
G_x = soundstream(x)
s_x = torch.stft(x.squeeze(), n_fft=1024, hop_length=256, window=torch.hann_window(window_length=1024, device=device), return_complex=False).permute(0, 3, 1, 2)
lengths_s_x = 1 + torch.div(lengths_x, 256, rounding_mode="floor")
s_G_x = torch.stft(G_x.squeeze(), n_fft=1024, hop_length=256, window=torch.hann_window(window_length=1024, device=device), return_complex=False).permute(0, 3, 1, 2)
lengths_stft = stft_disc.features_lengths(lengths_s_x)
lengths_wave = wave_disc.features_lengths(lengths_x)
features_stft_disc_x = stft_disc(s_x)
features_wave_disc_x = wave_disc(x)
features_stft_disc_G_x = stft_disc(s_G_x)
features_wave_disc_G_x = wave_disc(G_x)
loss_g = criterion_g(x, G_x, features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x, features_wave_disc_G_x, lengths_wave, lengths_stft)
valid_loss_g += loss_g.item()
features_stft_disc_x = stft_disc(s_x)
features_wave_disc_x = wave_disc(x)
features_stft_disc_G_x_det = stft_disc(s_G_x.detach())
features_wave_disc_G_x_det = wave_disc(G_x.detach())
loss_d = criterion_d(features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x_det, features_wave_disc_G_x_det, lengths_stft, lengths_wave)
valid_loss_d += loss_d.item()
if valid_loss_g < best_val_loss:
best_model = soundstream.state_dict().copy()
best_val_loss = valid_loss_g
history["valid"]["d"].append(valid_loss_d/len(valid_loader))
history["valid"]["g"].append(valid_loss_g/len(valid_loader))
with torch.no_grad():
stft_disc.eval()
wave_disc.eval()
test_loss_d = 0.0
test_loss_g = 0.0
for x, lengths_x in tqdm(test_loader):
x = x.to(device)
lengths_x = lengths_x.to(device)
G_x = soundstream(x)
s_x = torch.stft(x.squeeze(), n_fft=1024, hop_length=256, window=torch.hann_window(window_length=1024, device=device), return_complex=False).permute(0, 3, 1, 2)
lengths_s_x = 1 + torch.div(lengths_x, 256, rounding_mode="floor")
s_G_x = torch.stft(G_x.squeeze(), n_fft=1024, hop_length=256, window=torch.hann_window(window_length=1024, device=device), return_complex=False).permute(0, 3, 1, 2)
lengths_stft = stft_disc.features_lengths(lengths_s_x)
lengths_wave = wave_disc.features_lengths(lengths_x)
features_stft_disc_x = stft_disc(s_x)
features_wave_disc_x = wave_disc(x)
features_stft_disc_G_x = stft_disc(s_G_x)
features_wave_disc_G_x = wave_disc(G_x)
loss_g = criterion_g(x, G_x, features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x, features_wave_disc_G_x, lengths_wave, lengths_stft)
test_loss_g += loss_g.item()
features_stft_disc_x = stft_disc(s_x)
features_wave_disc_x = wave_disc(x)
features_stft_disc_G_x_det = stft_disc(s_G_x.detach())
features_wave_disc_G_x_det = wave_disc(G_x.detach())
loss_d = criterion_d(features_stft_disc_x, features_wave_disc_x, features_stft_disc_G_x_det, features_wave_disc_G_x_det, lengths_stft, lengths_wave)
test_loss_d += loss_d.item()
history["test"]["d"].append(test_loss_d/len(test_loader))
history["test"]["g"].append(test_loss_g/len(test_loader))