Skip to content

Latest commit

 

History

History
229 lines (165 loc) · 6.57 KB

README.md

File metadata and controls

229 lines (165 loc) · 6.57 KB

Portfolio
Note: This repository is for showcasing my skillset. In most of the projects, to reproduce the results, data will be required. For data, kindly send me email at "wiqaaas@gmail.com".

The work in this repository is arranged in Eight categories i.e.

Deep Learning using Tensorflow | Machine Learning using Python | Exploratory Data Analysis and Visualization using Python | Databases and Web Scraping using Python | IT Automation using Python | OpenCV using Python | IBM Watson API for AI Applications | Tutorials




**Each Category is further subdivided in following way:**



**Deep Learning using Tensorflow**

  1. Advanced Computer Vision

    • Image Captioning
    • Image Generation using GAN
    • Image Generation using Variational AutoEncoders
    • Image Morphing
    • Image Retrieval
    • Image DeNoising using AutoEncoders
    • Image Segmentation using U-Net
    • Imbalanced X-ray Classification
    • Modern CNN Architectures in Tensorflow
      • Basic CNN in Tensorflow
      • InceptionV3 in Tensorflow
      • ResNet50 in Tensorflow
    • Demystifying CNN
      • Gradient Visualization with Classification Activation Maps
      • Practice CNN Filters
  2. Natural Language and Sequence Processing

    • Text Generation
    • Text Classification with Word Embeddings
    • Other Sequential Data Processing
      • SunSpot Prediction using CNN_LSTM
      • Time Series Prediction
  3. Different AutoEncoders

    • Convolutional AutoEncoders
    • Sparse AutoEncoders
    • Simple PCA AutoEncoders
  4. Using Multiple Sources of Data

    • Multiple Inpute Single Output
    • Single Input Multiple Output

**Machine Learning using Python**

  1. Machine Learning using Libraries

    • Machine Learning using Scikit Learn
    • Machine Learning using Turicreate
  2. Machine Learning from Scatch Development

    • Regression, Classification, and Clustering Algorithms

      • Neural Network based Algorithms

        1. Deep Neural Networks
        2. Graph Neural Networks
      • Tree based Algorithms

        1. Binary Decision Trees
        2. Regularized Binary Decision Trees
      • Neighborhood based Algorithms

        1. Adaptive Nearest Neighbors
      • Linear Regression based Algorithms

        1. Multiple Regression using OLS and Gradient Descent
        2. Logistic Regression using Maximum LIkelihood and Gradient Ascent
        3. Logistic Regression using Stochastic Gradient Ascent
      • Fuzzy Logic based Algorithms

        1. Fuzzy C-means Clustering
        2. Fuzzy C-means Global and Local Regression
        3. Adaptive Neuro Fuzzy Inference Systems
      • Geostatistics based Algorithms

        1. Ordinary Kriging
    • Ensembling and Regularization

      • AdaBoosting Decision Trees
      • Ridge Regression using Gradient Descent
      • Lasso Regression using Coordinate Descent
    • Recommendation Systems

      • Movie Recommendation System
      • Search Engine Recommender
      • Simulated Annealing based Mining Recommendader
    • Risk Analysis (Time to Event Data)

      • Kaplan Meier Estimates
      • Cox Prop Hazards and Survival Forests
      • C-Index Evaluation Metric
  3. Machine Learning Utilities

    • Holdout Grid Search
    • Evaluation Metrics for Classification
    • Precision and Recall Tradeoff
    • Bias Removal with Declustering
  4. Feature Engineering

    • Feature Selection using LASSO
    • Machine Learning Interpretation using SHAP


**Exploratory Data Analysis and Visualization using Python**

  1. Data Exploration and Analysis using Python

    • Data Analysis Capstone
    • Analysis using Pandas
    • Analysis using Sql
    • Time Series Data Analysis
    • Spatial Analysis
  2. Data Visualization using Python

    • Complete Interactive and Non-Interactive Visualization Capstone


**Databases with Web Scraping using Python**

  1. Capstone Projects

    • sqlite for pagerank algorithm
    • sqlite for Mailing List
    • sqlite for GeoSpatial Data</b
  2. Basic Web Scraping

    • google maps api
    • html parsing
    • json data extraction
    • xml data extraction
  3. Reading Different Document Formats

    • sqlite from xml files
    • sqlite from json files
    • sqlite from text files

**IT Automation using Python**

  1. Interaction with Operating System

  2. File Processing

  3. Unit Testing

**OpenCV using Python**

  1. Basic Image Processing

  2. Facial Recognition System

**IBM Watson API for AI Applications**

  1. Chatbots

  2. Visual Recognition

**Tutorials**

  1. Complete Python Object Oriented Programming

  2. Command Line Games using Python

  3. Introductory Numpy, Pandas, and Scipy Tutorials