Skip to content

Latest commit

 

History

History
40 lines (26 loc) · 3.57 KB

README.md

File metadata and controls

40 lines (26 loc) · 3.57 KB

Multi-task Self-supervised Object Detection

This is an implementation of CVPR 2019: "Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations" This is a novel object detection approach that takes advantage of both multi-task learning (MTL) and self-supervised learning (SSL). We propose a set of auxiliary tasks that help improve the accuracy of object detection.

The code is modified from Tensorflow Object Detection API.

Table of contents

Evaluation of models

Model name (baseline/ours) Detector Backbone Training Eval Baseline Ours
model11 / model12 Faster R-CNN ResNet101 VOC 07 trainval VOC 07 test 77.0 78.7
model21 / model22 Faster R-CNN ResNet101 COCO 2017 train COCO 2017 val 32.7 34.6
model31 / model32 Faster R-CNN ResNet101 VOC 07+12 trainval VOC 07 test 81.7 83.7
model41 / model42 R-FCN ResNet101 VOC 07 trainval VOC 07 test 73.5 74.7
model51 / model52 Faster R-CNN MobileNet VOC 07 trainval VOC 07 test 61.2 63.8
model61 / model62 Faster R-CNN Inception ResNet v2 VOC 07 trainval VOC 07 test 80.7 81.8
model71 / model72 R-FCN ResNet101 VOC 07+12 trainval VOC 07 test 78.6 80.6
model81 / model82 Faster R-CNN MobileNet VOC 07+12 trainval VOC 07 test 68.6 70.8
model91 / model92 Faster R-CNN Inception ResNet v2 VOC 07+12 trainval VOC 07 test 84.3 86.0