-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
528 lines (425 loc) · 35.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# CUDA_VISIBLE_DEVICES=1,2,4,5
import os
import argparse
from tqdm import tqdm
import numpy as np
from einops import rearrange
import torch
import torch.nn.functional as F
from torchvision import utils as vutils
from model.time_vqgan_template import Classifier, VQGAN, NLayerDiscriminator, NLayerDiscriminator3D
from model.sinkhorn import SinkhornSolver, sinkhorn_rpm, sinkhorn, sinkhorn_cross_batch
from utils.tools import get_world_size, get_global_rank, get_local_rank, get_master_ip
from utils.lpips import LPIPS
from utils.utils import load_data, weights_init, adopt_weight
from data.cardiacnet import CardiacNet_Dataset
from monai.data import DataLoader
import wandb
def hinge_d_loss(logits_real, logits_fake):
loss_real = torch.mean(F.relu(1. - logits_real))
loss_fake = torch.mean(F.relu(1. + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def vanilla_d_loss(logits_real, logits_fake):
d_loss = 0.5 * (
torch.mean(torch.nn.functional.softplus(-logits_real)) +
torch.mean(torch.nn.functional.softplus(logits_fake)))
return d_loss
class CardiacNet:
def __init__(self, args):
self.classifier = Classifier(args).to(device=args.device)
self.opt_classifier = torch.optim.Adam(self.classifier.parameters(), lr=args.learning_rate, eps=1e-08)
self.normal_vqgan = VQGAN(args).to(device=args.device)
# Currently we train from scratch
# normal_checkpoint_path = f"./checkpoints/xxxx.pt"
# self.normal_vqgan.load_state_dict({k.replace('module.',''):v for k, v in torch.load(normal_checkpoint_path, map_location=args.device).items()})
self.normal_discriminator = NLayerDiscriminator(args.image_channels, args.disc_channels, args.disc_layers).to(device=args.device)
self.normal_discriminator_3d = NLayerDiscriminator3D(args.image_channels, args.disc_channels, args.disc_layers).to(device=args.device)
self.normal_discriminator.apply(weights_init)
self.opt_vq_normal, self.opt_disc_normal, self.opt_3d_disc_normal = self.configure_optimizers(args, self.normal_vqgan, self.normal_discriminator, self.normal_discriminator_3d)
self.abnorm_vqgan = VQGAN(args).to(device=args.device)
# Currently we train from scratch
# abnorm_checkpoint_path = f"./checkpoints/xxxx.pt"
# self.abnorm_vqgan.load_state_dict({k.replace('module.',''):v for k, v in torch.load(abnorm_checkpoint_path, map_location=args.device).items()})
self.abnorm_discriminator = NLayerDiscriminator(args.image_channels, args.disc_channels, args.disc_layers).to(device=args.device)
self.abnorm_discriminator_3d = NLayerDiscriminator3D(args.image_channels, args.disc_channels, args.disc_layers).to(device=args.device)
self.abnorm_discriminator.apply(weights_init)
self.opt_vq_abnorm, self.opt_disc_abnorm, self.opt_3d_disc_abnorm = self.configure_optimizers(args, self.abnorm_vqgan, self.abnorm_discriminator, self.abnorm_discriminator_3d)
if args.distributed:
self.classifier = torch.nn.parallel.DistributedDataParallel(self.classifier, broadcast_buffers=True, find_unused_parameters=True,)
# For normal
self.normal_vqgan = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.normal_vqgan)
self.normal_vqgan = torch.nn.parallel.DistributedDataParallel(self.normal_vqgan, broadcast_buffers=True, find_unused_parameters=True,)
self.normal_discriminator = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.normal_discriminator)
self.normal_discriminator = torch.nn.parallel.DistributedDataParallel(self.normal_discriminator, broadcast_buffers=True, find_unused_parameters=True,)
self.normal_discriminator_3d = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.normal_discriminator_3d)
self.normal_discriminator_3d = torch.nn.parallel.DistributedDataParallel(self.normal_discriminator_3d, broadcast_buffers=True, find_unused_parameters=True,)
# For abnormal
self.abnorm_vqgan = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.abnorm_vqgan)
self.abnorm_vqgan = torch.nn.parallel.DistributedDataParallel(self.abnorm_vqgan, broadcast_buffers=True, find_unused_parameters=True,)
self.abnorm_discriminator = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.abnorm_discriminator)
self.abnorm_discriminator = torch.nn.parallel.DistributedDataParallel(self.abnorm_discriminator, broadcast_buffers=True, find_unused_parameters=True,)
self.abnorm_discriminator_3d = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.abnorm_discriminator_3d)
self.abnorm_discriminator_3d = torch.nn.parallel.DistributedDataParallel(self.abnorm_discriminator_3d, broadcast_buffers=True, find_unused_parameters=True,)
elif len(args.enable_GPUs_id) > 1:
# For normal
self.normal_vqgan = torch.nn.DataParallel(self.normal_vqgan, device_ids=args.enable_GPUs_id, output_device=args.enable_GPUs_id[0])
self.normal_discriminator = torch.nn.DataParallel(self.normal_discriminator, device_ids=args.enable_GPUs_id, output_device=args.enable_GPUs_id[0])
self.normal_discriminator_3d = torch.nn.DataParallel(self.normal_discriminator_3d, device_ids=args.enable_GPUs_id, output_device=args.enable_GPUs_id[0])
# For abnormal
self.abnorm_vqgan = torch.nn.DataParallel(self.abnorm_vqgan, device_ids=args.enable_GPUs_id, output_device=args.enable_GPUs_id[0])
self.abnorm_discriminator = torch.nn.DataParallel(self.abnorm_discriminator, device_ids=args.enable_GPUs_id, output_device=args.enable_GPUs_id[0])
self.abnorm_discriminator_3d = torch.nn.DataParallel(self.abnorm_discriminator_3d, device_ids=args.enable_GPUs_id, output_device=args.enable_GPUs_id[0])
self.mseloss = torch.nn.MSELoss(reduction='mean')
self.cycle_criterion = torch.nn.L1Loss()
self.cossim = torch.nn.CosineSimilarity(dim=1)
self.sinkhorn_loss = SinkhornSolver(epsilon=1e-6, iterations=10, reduction='mean')
# use the perceputal loss
# self.perceptual_loss = LPIPS().eval().to(device=args.device)
if args.disc_loss_type == 'vanilla':
self.disc_loss = vanilla_d_loss
elif args.disc_loss_type == 'hinge':
self.disc_loss = hinge_d_loss
self.prepare_training()
train_dataset_normal = CardiacNet_Dataset(args, select_set=['Non-ASD'], is_video=True, is_train=True)
train_dataset_abnorm = CardiacNet_Dataset(args, select_set=['ASD'], is_video=True, is_train=True)
train_loader_normal = DataLoader(train_dataset_normal, batch_size=args.batch_size, shuffle=True, num_workers=8)
self.train(args, train_loader_normal, train_dataset_abnorm)
def configure_optimizers(self, args, vq_model, vq_discriminator, vq_discriminator_3d):
lr = args.learning_rate
opt_vq = torch.optim.Adam(vq_model.parameters(), lr=lr, eps=1e-08, betas=(args.beta1, args.beta2)
)
opt_disc = torch.optim.Adam(vq_discriminator.parameters(),
lr=lr, eps=1e-08, betas=(args.beta1, args.beta2))
opt_3d_disc = torch.optim.Adam(vq_discriminator_3d.parameters(),
lr=lr, eps=1e-08, betas=(args.beta1, args.beta2))
return opt_vq, opt_disc, opt_3d_disc
@staticmethod
def prepare_training():
os.makedirs("results", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
def train(self, args, train_normal, train_dataset_abnorm):
steps_per_epoch = len(train_normal)
record_steps = 0
for epoch in range(args.epochs):
train_abnorm = iter(DataLoader(train_dataset_abnorm, batch_size=args.batch_size, shuffle=True, num_workers=8))
with tqdm(range(steps_per_epoch)) as pbar:
for step, (normal_vids, normal_masked_pos, normal_mpap, _) in zip(pbar, train_normal):
abnorm_vids, abnorm_masked_pos, abnorm_mpap, _ = next(train_abnorm)
normal_vids = normal_vids.to(device=args.device)
abnorm_vids = abnorm_vids.to(device=args.device)
normal_masked_pos = rearrange(normal_masked_pos.to(device=args.device), 'b (l h w) p1 p2 -> b l (h p1) (w p2)',
h=args.image_size[0]//args.mask_size, w=args.image_size[1]//args.mask_size,
l=args.image_size[2], p1=args.mask_size, p2=args.mask_size).unsqueeze(1)
abnorm_masked_pos = rearrange(abnorm_masked_pos.to(device=args.device), 'b (l h w) p1 p2 -> b l (h p1) (w p2)',
h=args.image_size[0]//args.mask_size, w=args.image_size[1]//args.mask_size,
l=args.image_size[2], p1=args.mask_size, p2=args.mask_size).unsqueeze(1)
video_recon_A, frame_A, frame_recon_A, (ft_N2A, vq_N2A, inter_ft_N2A_loss, inter_vq_N2A_loss, pos_emb_N2A, normal_commitment_loss), ft_output_A = self.normal_vqgan(torch.cat((normal_vids, abnorm_vids), dim=0),
torch.cat((normal_masked_pos, abnorm_masked_pos), dim=0), templated = True, type = 'N2A')
video_recon_B, frame_B, frame_recon_B, (ft_A2N, vq_A2N, inter_ft_A2N_loss, inter_vq_A2N_loss, pos_emb_A2N, abnorm_commitment_loss), ft_output_B = self.abnorm_vqgan(torch.cat((normal_vids, abnorm_vids), dim=0),
torch.cat((normal_masked_pos, abnorm_masked_pos), dim=0), templated = True, type = 'A2N')
normal2abnorm_video_recon, identity_video_A = video_recon_A[:args.batch_size], video_recon_A[args.batch_size:]
abnorm2normal_video_recon, identity_video_B = video_recon_B[args.batch_size:], video_recon_B[:args.batch_size]
normal2abnorm_frame_recon, identity_frame_A = frame_recon_A[:args.batch_size], frame_recon_A[args.batch_size:]
abnorm2normal_frame_recon, identity_frame_B = frame_recon_B[args.batch_size:], frame_recon_B[:args.batch_size]
normal_frames, abnorm_frames = frame_A[:args.batch_size], frame_A[args.batch_size:]
recovered_normal_video, _, recovered_normal_frame, (_, _, recovered_abnorm_commitment_loss), recovered_normal_ft_output = self.abnorm_vqgan(normal2abnorm_video_recon,
abnorm_masked_pos, type = 'A2N')
recovered_abnorm_video, _, recovered_abnorm_frame, (_, _, recovered_normal_commitment_loss), recovered_abnorm_ft_output = self.normal_vqgan(abnorm2normal_video_recon,
normal_masked_pos, type = 'N2A')
disc_factor = adopt_weight(record_steps, threshold=args.disc_start)
record_steps += 1
feat_weights = 4.0 / (3 + 1)
if record_steps > args.disc_start:
loss_identity_A = torch.sum(torch.mul(args.identity_weight, F.l1_loss(identity_video_A, abnorm_vids)))
loss_identity_B = torch.sum(torch.mul(args.identity_weight, F.l1_loss(identity_video_B, normal_vids)))
# FT_deform_loss = 0.001 * (sinkhorn(ft_N2A, ft_A2N.detach(), w_x=pos_emb_N2A, w_y=pos_emb_N2A)[0] +
# sinkhorn(ft_A2N, ft_N2A.detach(), w_x=pos_emb_A2N, w_y=pos_emb_A2N)[0]) / 2
VQ_deform_loss = 0.001 * (sinkhorn_cross_batch(vq_N2A, vq_A2N.detach())[0] +
sinkhorn_cross_batch(vq_A2N, vq_N2A.detach())[0]) / 2
# Discriminator for Normal Cases
gan_normal_feat_loss = 0
logits_image_normal_fake, pred_image_normal_fake = self.normal_discriminator(recovered_normal_frame)
logits_video_normal_fake, pred_video_normal_fake = self.normal_discriminator_3d(recovered_normal_video)
if args.gan_feat_loss:
image_normal_gan_feat_loss = 0
video_normal_gan_feat_loss = 0
if args.image_gan_weight > 0:
logits_normal_image_real, pred_normal_image_real = self.normal_discriminator(normal_frames)
for i in range(len(pred_image_normal_fake)-1):
image_normal_gan_feat_loss += feat_weights * F.l1_loss(pred_image_normal_fake[i], pred_normal_image_real[i].detach()) * (args.image_gan_weight > 0)
if args.video_gan_weight > 0:
logits_normal_video_real, pred_normal_video_real = self.normal_discriminator_3d(normal_vids)
for i in range(len(pred_video_normal_fake)-1):
video_normal_gan_feat_loss += feat_weights * F.l1_loss(pred_video_normal_fake[i], pred_normal_video_real[i].detach()) * (args.video_gan_weight > 0)
gan_normal_feat_loss = disc_factor * args.gan_feat_weight * (image_normal_gan_feat_loss + video_normal_gan_feat_loss)
g_normal_image_loss = -torch.mean(logits_image_normal_fake)
g_normal_video_loss = -torch.mean(logits_video_normal_fake)
logits_image_abnorm2normal_fake, _ = self.normal_discriminator(abnorm2normal_frame_recon)
logits_video_abnorm2normal_fake, _ = self.normal_discriminator_3d(abnorm2normal_video_recon)
g_normal_image_loss = g_normal_image_loss - torch.mean(logits_image_abnorm2normal_fake)
g_normal_video_loss = g_normal_video_loss - torch.mean(logits_video_abnorm2normal_fake)
g_normal_loss = args.image_gan_weight * g_normal_image_loss + args.video_gan_weight * g_normal_video_loss
normal_aeloss = 1 * disc_factor * g_normal_loss
normal_recall_loss = 0.01 * self.mseloss(self.classifier(ft_output_A).squeeze(-1), torch.cat((normal_mpap, abnorm_mpap)).to(device=args.device).float())
overall_normal_loss = normal_aeloss + gan_normal_feat_loss + 0.5 * loss_identity_A * 10 +\
normal_commitment_loss + recovered_normal_commitment_loss + inter_ft_N2A_loss + inter_vq_N2A_loss + normal_recall_loss
# discriminator for abnormal cases
gan_abnorm_feat_loss = 0
logits_image_abnorm_fake, pred_image_abnorm_fake = self.abnorm_discriminator(recovered_abnorm_frame)
logits_video_abnorm_fake, pred_video_abnorm_fake = self.abnorm_discriminator_3d(recovered_abnorm_video)
if args.gan_feat_loss:
image_abnorm_gan_feat_loss = 0
video_abnorm_gan_feat_loss = 0
if args.image_gan_weight > 0:
logits_abnorm_image_real, pred_abnorm_image_real = self.abnorm_discriminator(abnorm_frames)
for i in range(len(pred_image_abnorm_fake)-1):
image_abnorm_gan_feat_loss += feat_weights * F.l1_loss(pred_image_abnorm_fake[i], pred_abnorm_image_real[i].detach()) * (args.image_gan_weight > 0)
if args.video_gan_weight > 0:
logits_abnorm_video_real, pred_abnorm_video_real = self.abnorm_discriminator_3d(abnorm_vids)
for i in range(len(pred_video_abnorm_fake)-1):
video_abnorm_gan_feat_loss += feat_weights * F.l1_loss(pred_video_abnorm_fake[i], pred_abnorm_video_real[i].detach()) * (args.video_gan_weight > 0)
gan_abnorm_feat_loss = disc_factor * args.gan_feat_weight * (image_abnorm_gan_feat_loss + video_abnorm_gan_feat_loss)
g_abnorm_image_loss = -torch.mean(logits_image_abnorm_fake)
g_abnorm_video_loss = -torch.mean(logits_video_abnorm_fake)
logits_image_normal2abnorm_fake, _ = self.abnorm_discriminator(normal2abnorm_frame_recon)
logits_video_normal2abnorm_fake, _ = self.abnorm_discriminator_3d(normal2abnorm_video_recon)
g_abnorm_image_loss = g_abnorm_image_loss - torch.mean(logits_image_normal2abnorm_fake)
g_abnorm_video_loss = g_abnorm_video_loss - torch.mean(logits_video_normal2abnorm_fake)
g_abnorm_loss = args.image_gan_weight * g_abnorm_image_loss + args.video_gan_weight * g_abnorm_video_loss
abnorm_aeloss = 1 * disc_factor * g_abnorm_loss
abnorm_recall_loss = 0.01 * self.mseloss(self.classifier(ft_output_B).squeeze(-1), torch.cat((normal_mpap, abnorm_mpap)).to(device=args.device).float())
overall_abnorm_loss = abnorm_aeloss + gan_abnorm_feat_loss + 0.5 * loss_identity_B * 10 +\
abnorm_commitment_loss + recovered_abnorm_commitment_loss + inter_ft_A2N_loss + inter_vq_A2N_loss + abnorm_recall_loss
self.opt_classifier.zero_grad()
self.opt_vq_normal.zero_grad()
self.opt_vq_abnorm.zero_grad()
loss_cycle_A = torch.sum(torch.mul(args.cycle_weight, self.cycle_criterion(recovered_normal_video, normal_vids)))
loss_cycle_B = torch.sum(torch.mul(args.cycle_weight, self.cycle_criterion(recovered_abnorm_video, abnorm_vids)))
overall_normal_loss = overall_normal_loss + 10 * loss_cycle_A
overall_abnorm_loss = overall_abnorm_loss + 10 * loss_cycle_B
overall_loss = overall_normal_loss + overall_abnorm_loss - VQ_deform_loss
overall_loss.backward()
self.opt_classifier.step()
self.opt_vq_normal.step()
self.opt_vq_abnorm.step()
if args.local_rank == args.enable_GPUs_id[0]:
if args.train_normal:
if args.wandb:
wandb.log({'Normal-loss/Recon Loss': loss_identity_A.item(),
'Normal-loss/Cycle Loss': loss_cycle_A.item(),
#'Normal-loss/Inter N2A OT Loss': inter_ft_N2A_loss.item(),
'Normal-loss/Inter N2A VQ Loss': inter_vq_N2A_loss.item(),
# 'Normal-loss/FT N2A Loss': FT_deform_loss.item(),
'Normal-loss/VQ N2A Loss': VQ_deform_loss.item(),
'Normal-loss/Commitment Loss': normal_commitment_loss.item() + recovered_normal_commitment_loss.item(),
'Normal-loss/AEloss': normal_aeloss.item(),
# 'Normal-loss/GAN Feature Loss': gan_normal_feat_loss.item(),
'Normal-loss/Class Loss': normal_recall_loss,
'Normal-loss/Overall Loss': overall_normal_loss.item()},
step = step)
if args.train_abnorm:
if args.wandb:
wandb.log({'Abnorm-loss/Recon Loss': loss_identity_B.item(),
'Abnorm-loss/Cycle Loss': loss_cycle_B.item(),
# 'Abnorm-loss/Inter A2N OT Loss': inter_ft_A2N_loss.item(),
'Abnorm-loss/Inter A2N VQ Loss': inter_vq_A2N_loss.item(),
# 'Abnorm-loss/FT A2N Loss': FT_deform_loss.item(),
'Abnorm-loss/VQ A2N Loss': VQ_deform_loss.item(),
'Abnorm-loss/Commitment Loss': abnorm_commitment_loss.item() + recovered_abnorm_commitment_loss.item(),
'Abnorm-loss/AEloss': abnorm_aeloss.item(),
# 'Abnorm-loss/GAN Feature Loss': gan_abnorm_feat_loss.item(),
'Abnorm-loss/Class Loss': abnorm_recall_loss,
'Abnorm-loss/Overall Loss': overall_abnorm_loss.item()},
step = step)
if step % 2 == 1 and record_steps > args.disc_start:
if args.train_normal:
d_normal_image_loss, d_normal_video_loss, normal_discloss = 0, 0, 0
logits_normal_image_real, _ = self.normal_discriminator(normal_frames.detach())
logits_normal_video_real, _ = self.normal_discriminator_3d(normal_vids.detach())
logits_normal_image_fake, _ = self.normal_discriminator(recovered_normal_frame.detach())
logits_normal_video_fake, _ = self.normal_discriminator_3d(recovered_normal_video.detach())
logits_abnorm2normal_image_fake, _ = self.normal_discriminator(abnorm2normal_frame_recon.detach())
logits_abnorm2normal_video_fake, _ = self.normal_discriminator_3d(abnorm2normal_video_recon.detach())
d_normal_image_loss = self.disc_loss(logits_normal_image_real, logits_normal_image_fake) + \
self.disc_loss(logits_normal_image_real, logits_abnorm2normal_image_fake)
# self.calculate_gradient_penalty(self.normal_discriminator, normal_frames.data, recovered_normal_frame.data, args.device) * 10
# self.calculate_gradient_penalty(self.normal_discriminator, normal_frames.data, abnorm2normal_frame_recon.data, args.device) * 10
d_normal_video_loss = self.disc_loss(logits_normal_video_real, logits_normal_video_fake) + \
self.disc_loss(logits_normal_video_real, logits_abnorm2normal_video_fake)
# self.calculate_gradient_penalty(self.normal_discriminator_3d, normal_vids.data, recovered_normal_video.data, args.device) * 10
# self.calculate_gradient_penalty(self.normal_discriminator_3d, normal_vids.data, abnorm2normal_video_recon.data, args.device) * 10
normal_discloss = disc_factor * (args.image_gan_weight * d_normal_image_loss + args.video_gan_weight * d_normal_video_loss)
self.opt_disc_normal.zero_grad()
self.opt_3d_disc_normal.zero_grad()
normal_discloss.backward()
self.opt_disc_normal.step()
self.opt_3d_disc_normal.step()
if args.train_abnorm:
logits_abnorm_image_real, _ = self.abnorm_discriminator(abnorm_frames.detach())
logits_abnorm_video_real, _ = self.abnorm_discriminator_3d(abnorm_vids.detach())
logits_abnorm_image_fake, _ = self.abnorm_discriminator(recovered_abnorm_frame.detach())
logits_abnorm_video_fake, _ = self.abnorm_discriminator_3d(recovered_abnorm_video.detach())
logits_normal2abnorm_image_fake, _ = self.abnorm_discriminator(normal2abnorm_frame_recon.detach())
logits_normal2abnorm_video_fake, _ = self.abnorm_discriminator_3d(normal2abnorm_video_recon.detach())
d_abnorm_image_loss = self.disc_loss(logits_abnorm_image_real, logits_abnorm_image_fake) + \
self.disc_loss(logits_abnorm_image_real, logits_normal2abnorm_image_fake)
# self.calculate_gradient_penalty(self.abnorm_discriminator, abnorm_frames.data, recovered_abnorm_frame.data, args.device) * 10
# self.calculate_gradient_penalty(self.abnorm_discriminator, abnorm_frames.data, normal2abnorm_frame_recon.data, args.device) * 10
d_abnorm_video_loss = self.disc_loss(logits_abnorm_video_real, logits_abnorm_video_fake) + \
self.disc_loss(logits_abnorm_video_real, logits_normal2abnorm_video_fake)
# self.calculate_gradient_penalty(self.abnorm_discriminator_3d, abnorm_vids.data, recovered_abnorm_video.data, args.device) * 10
# self.calculate_gradient_penalty(self.abnorm_discriminator_3d, abnorm_vids.data, normal2abnorm_video_recon.data, args.device) * 10
abnorm_discloss = disc_factor * (args.image_gan_weight * d_abnorm_image_loss + args.video_gan_weight * d_abnorm_video_loss)
self.opt_disc_abnorm.zero_grad()
self.opt_3d_disc_abnorm.zero_grad()
abnorm_discloss.backward()
self.opt_disc_abnorm.step()
self.opt_3d_disc_abnorm.step()
if args.local_rank == args.enable_GPUs_id[0]:
if args.train_normal:
if args.wandb:
wandb.log({'Normal-loss/Image Dis Loss': d_normal_image_loss,
'Normal-loss/Video Dis Loss': d_normal_video_loss,
'Normal-loss/OverAll Disc Loss': normal_discloss,},
step = step)
if args.train_abnorm:
if args.wandb:
wandb.log({'Abnorm-loss/Image Dis Loss': d_abnorm_image_loss,
'Abnorm-loss/Video Dis Loss': d_abnorm_video_loss,
'Abnorm-loss/OverAll Disc Loss': abnorm_discloss,},
step = step)
pbar.update(0)
if step % 200 == 0:
with torch.no_grad():
if args.train_normal:
real_fake_normal_images= torch.cat((normal_frames.add(1.0).mul(0.5)[:, :1], normal2abnorm_frame_recon.add(1.0).mul(0.5)[:, :1],
identity_frame_B.add(1.0).mul(0.5)[:, :1], recovered_normal_frame.add(1.0).mul(0.5)[:, :1],))
vutils.save_image(real_fake_normal_images, os.path.join("results", f"normal_{epoch}_{step}.jpg"), nrow=2)
if args.train_abnorm:
real_fake_abnorm_images= torch.cat((abnorm_frames.add(1.0).mul(0.5)[:, :1], abnorm2normal_frame_recon.add(1.0).mul(0.5)[:, :1],
identity_frame_A.add(1.0).mul(0.5)[:, :1], recovered_abnorm_frame.add(1.0).mul(0.5)[:, :1],))
vutils.save_image(real_fake_abnorm_images, os.path.join("results", f"abnorm_{epoch}_{step}.jpg"), nrow=2)
if step != 0 and step % 1000 == 0:
if args.train_normal:
torch.save(self.normal_vqgan.state_dict(), os.path.join("checkpoints", f"vqgan_dual_normal_epoch_{step // 1000}.pt"))
if args.train_abnorm:
torch.save(self.abnorm_vqgan.state_dict(), os.path.join("checkpoints", f"vqgan_dual_abnorm_epoch_{step // 1000}.pt"))
# Code for WGAN GP
def calculate_gradient_penalty(self, discriminator, real_images, fake_images, device):
"""Calculates the gradient penalty loss for WGAN GP"""
# Random weight term for interpolation between real and fake data]
if len(real_images.shape) == 4:
alpha = torch.randn((real_images.size(0), 1, 1, 1), device=device)
elif len(real_images.shape) == 5:
alpha = torch.randn((real_images.size(0), 1, 1, 1, 1), device=device)
# Get random interpolation between real and fake data
interpolates = (alpha * real_images + ((1 - alpha) * fake_images)).requires_grad_(True)
model_interpolates, _ = discriminator(interpolates)
grad_outputs = torch.ones(model_interpolates.size(), device=device)
# Get gradient w.r.t. interpolates
gradients = torch.autograd.grad(
outputs=model_interpolates,
inputs=interpolates,
grad_outputs=grad_outputs,
create_graph=True,
retain_graph=True,
only_inputs=True,)
gradients = gradients[0].view(gradients.size(0), -1)
gradient_penalty = torch.mean((gradients.norm(2, dim=1) - 1) ** 2)
return gradient_penalty * 10
def main(rank, args):
def wandb_init():
wandb.init(
project='CardiacNet',
entity='CardiacNet Version 1.0',
name='Enter your name',
notes='The first version of CardiacNet',
save_code=True
)
wandb.config.update(args)
try:
args.local_rank
except AttributeError:
args.global_rank = rank
args.local_rank = args.enable_GPUs_id[rank]
else:
if args.distributed:
args.global_rank = rank
args.local_rank = args.enable_GPUs_id[rank]
if args.distributed:
torch.cuda.set_device(int(args.local_rank))
torch.distributed.init_process_group(backend='nccl',
init_method=args.init_method,
world_size=args.world_size,
rank=args.global_rank,
group_name='mtorch'
)
print('using GPU {}-{} for training'.format(
int(args.global_rank), int(args.local_rank)
))
if args.local_rank == args.enable_GPUs_id[0]:
if args.wandb:
wandb_init()
if torch.cuda.is_available():
args.device = torch.device("cuda:{}".format(args.local_rank))
else:
args.device = 'cpu'
CardiacNet(args)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="CardiacNet")
parser.add_argument('--latent-dim', type=int, default=256, help='Latent dimension n_z (default: 256)')
parser.add_argument('--image-size', type=int, default=(112, 112, 16), help='Image height and width (default: 256)')
parser.add_argument('--num-codebook-vectors', type=int, default=1024, help='Number of codebook vectors (default: 256)')
parser.add_argument('--beta', type=float, default=0.25, help='Commitment loss scalar (default: 0.25)')
parser.add_argument('--image-channels', type=int, default=1, help='Number of channels of images (default: 3)')
parser.add_argument('--mask-size', type=int, default=8, help='The size of mask patch (default: 16)')
parser.add_argument('--mask-ratio', type=float, default=0.7, help='The ratio of masking area in an image (default: 0.75)')
parser.add_argument('--dataset-path', type=str, default='/data', help='Path to data (default: /data)')
parser.add_argument('--batch-size', type=int, default=1, help='Input batch size for training (default: 6)')
parser.add_argument('--epochs', type=int, default=3000, help='Number of epochs to train (default: 50)')
parser.add_argument('--learning-rate', type=float, default=2.25e-05, help='Learning rate (default: 0.0002)')
parser.add_argument('--beta1', type=float, default=0.5, help='Adam beta param (default: 0.0)')
parser.add_argument('--beta2', type=float, default=0.99, help='Adam beta param (default: 0.999)')
parser.add_argument('--disc-start', type=int, default=0, help='When to start the discriminator (default: 0)')
parser.add_argument('--disc-factor', type=float, default=1., help='')
parser.add_argument('--identity-weight', type=float, default=0.5, help='')
parser.add_argument('--cycle-weight', type=float, default=10, help='')
parser.add_argument('--rec-loss-factor', type=float, default=1., help='Weighting factor for reconstruction loss.')
parser.add_argument('--perceptual-loss-factor', type=float, default=1., help='Weighting factor for perceptual loss.')
parser.add_argument('--embedding_dim', type=int, default=256)
parser.add_argument('--n_codes', type=int, default=2048)
parser.add_argument('--n_hiddens', type=int, default=256)
parser.add_argument('--disc_channels', type=int, default=64)
parser.add_argument('--disc_layers', type=int, default=3, help='The default layer number is 3')
parser.add_argument('--norm_type', type=str, default='group', choices=['batch', 'group'])
parser.add_argument('--disc_loss_type', type=str, default='hinge', choices=['hinge', 'vanilla'])
parser.add_argument('--distance_loss', type=str, default='cossimilar', choices=['transport', 'cossimilar'])
parser.add_argument('--train_normal', type=bool, default=True)
parser.add_argument('--train_abnorm', type=bool, default=True)
parser.add_argument('--gan_feat_loss', type=bool, default=False)
parser.add_argument('--l1_weight', type=float, default=4.0)
parser.add_argument('--gan_feat_weight', type=float, default=0.1)
parser.add_argument('--image_gan_weight', type=float, default=1.0)
parser.add_argument('--video_gan_weight', type=float, default=1.0)
# setting for codebook
parser.add_argument('--restart_thres', type=float, default=1.0)
parser.add_argument('--no_random_restart', action='store_true')
parser.add_argument('--enable_GPUs_id', type=list, default=[4], help='The number and order of the enable gpus')
parser.add_argument('--wandb', type=bool, default=False, help='Enable Wandb')
args = parser.parse_args()
args.dataset_path = r'/home/jyangcu/Dataset/dataset_pa_iltrasound_nill_files_clean_image'
# setting distributed configurations
# args.world_size = 1
args.world_size = len(args.enable_GPUs_id)
args.init_method = f"tcp://{get_master_ip()}:{23455}"
args.distributed = True if args.world_size > 1 else False
# setup distributed parallel training environments
if get_master_ip() == "127.0.0.1" and args.distributed:
# manually launch distributed processes
torch.multiprocessing.spawn(main, nprocs=args.world_size, args=(args,))
else:
# multiple processes have been launched by openmpi
args.local_rank = args.enable_GPUs_id[0]
args.global_rank = args.enable_GPUs_id[0]
main(args.local_rank, args)