-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
executable file
·287 lines (238 loc) · 10.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import numpy as np
import pandas as pd
import nibabel as nib
import ntpath
import queue
import datetime
import matplotlib.pyplot as plt
from functools import partial
from tensorflow.keras.models import load_model
import glob
def get_roi_data(data_dir, out_dir):
param_list = [
'b0_map', #07
'dti_adc_map', #08
'dti_axial_map', #09
'dti_fa_map', #10
'dti_radial_map', #11
'fiber_ratio_map', #12
'fiber1_axial_map', #13
'fiber1_fa_map', #14
'fiber1_fiber_ratio_map', #15
'fiber1_radial_map', #16
'fiber2_axial_map', #17
'fiber2_fa_map', #18
'fiber2_fiber_ratio_map', #19
'fiber2_radial_map', #20
'hindered_adc_map', #21
'hindered_ratio_map', #22
'iso_adc_map', #23
'restricted_adc_1_map', #24
'restricted_adc_2_map', #25
'restricted_ratio_1_map',#26
'restricted_ratio_2_map', #27
'water_adc_map', #28
'water_ratio_map', #29
]
param_id = [
'b0', #07
'dti_adc', #08
'dti_axial', #09
'dti_fa', #10
'dti_radial', #11
'fiber_fraction', #12
'fiber1_axial', #13
'fiber1_fa', #14
'fiber1_fiber_fraction', #15
'fiber1_radial', #16
'fiber2_axial', #17
'fiber2_fa', #18
'fiber2_fiber_fraction', #19
'fiber2_radial', #20
'hindered_adc', #21
'hindered_fraction', #22
'iso_adc', #23
'highly_restricted_adc', #24
'restricted_adc', #25
'highly_restricted_fraction',#26
'restricted_fraction', #27
'water_adc', #28
'water_fraction', #29
]
dirs = []
for dirName, subdirList, fileList in os.walk(data_dir):
for dirname in range(len(subdirList)):
if subdirList[dirname] == 'DBSI_results_0.1_0.1_0.8_0.8_1.5_1.5':
#look for correct thresholds of files; append to dirs
dirs.append(os.path.join(dirName, subdirList[dirname]))
# insert voxel index and information into each column
col_list = param_id
col_list.insert(0, 'ROI_Class')
col_list.insert(0, 'ROI_ID')
col_list.insert(0, 'Voxel')
col_list.insert(0, 'Z')
col_list.insert(0, 'Y')
col_list.insert(0, 'X')
col_list.insert(0, 'Sub_ID')
df_stat = pd.DataFrame([], columns=col_list)
for dir in dirs:
sub_id = os.path.basename(os.path.dirname(dir))
#print(sub_id)
roi_path = dir
rois = [os.path.join(roi_path, 'roi.nii.gz')]
# looking at each roi individually
for roi in rois:
stat = []
try:
atlas = nib.load(roi).get_data()
except:
print('No roi')
continue
roi_folder, roi_name = os.path.split(roi)
current_dir = dir
# find all rois per file, look at the first one
if len(np.unique(atlas[atlas > 0])) > 0:
roi_id = np.unique(atlas[atlas > 0])[0]
idx = np.asarray(np.where(atlas == roi_id))
for item in range(len(param_list)):
print(item)
print(param_list[item])
img = nib.load(glob.glob(os.path.join(current_dir, param_list[item] + '.nii'))[0]).get_data()
#print(img)
sub_data = img[atlas == roi_id]
stat.append(sub_data)
# insert voxel index and information into each column
val = np.asarray(stat).astype(np.float32)
# -4 for .nii file, -7 for nii.gz file
val = np.concatenate((np.repeat(roi_name[:-7], len(sub_data))[np.newaxis], val), axis=0)
val = np.concatenate((np.repeat(roi_id, len(sub_data))[np.newaxis], val), axis=0)
val = np.concatenate((np.asarray(range(0, len(sub_data)))[np.newaxis], val), axis=0)
val = np.concatenate((idx, val), axis=0)
val = np.concatenate((np.repeat(sub_id, len(sub_data))[np.newaxis], val), axis=0)
val = np.transpose(val)
df = pd.DataFrame(val, columns=col_list)
df_stat = pd.concat([df_stat, df])
df_stat[df_stat.columns[7:29]] = df_stat[df_stat.columns[7:29]].astype('float64')
df_stat.fillna(df_stat.median(), inplace=True)
csv_file = 'prostate' + '.csv'
df_stat.to_csv(os.path.join(out_dir, csv_file), index=False)
print(df_stat)
return df_stat
def model_predict(pro_data_dir, out_dir, df_stat, x_input, overlaid_map):
df = df_stat
x_pred = df.iloc[:, x_input].astype('float64')
model = load_model(os.path.join(pro_data_dir, 'Tuned_model'))
pred = model.predict(x_pred)
print(pred)
pred_class = np.argmax(pred, axis=1)
print(pred_class)
img = np.zeros(shape=(128, 128, 10))
x_index = np.asarray(df.iloc[:, [1]])[:, 0].astype(int)
y_index = np.asarray(df.iloc[:, [2]])[:, 0].astype(int)
z_index = np.asarray(df.iloc[:, [3]])[:, 0].astype(int)
for i in range(x_index.shape[0]):
img[x_index[i], y_index[i], z_index[i]] = pred_class[i]
aff = nib.load(overlaid_map).affine
tumor_pred = nib.Nifti1Image(img, aff)
nib.save(tumor_pred, os.path.join(out_dir, 'tumor_map.nii.gz'))
return tumor_pred
def flood(img, position, conn):
floodMask = np.zeros(img.shape)
edge = queue.Queue()
visited = np.zeros(img.shape)
dim0 = img.shape[0]
dim1 = img.shape[1]
connectSet = []
if conn==0:
connectSet = [[1, -1], [1, 0], [1, 1], [0, -1], [0, 1], [-1, -1], [-1, 0], [-1, 1]]
elif conn==1:
connectSet = [[0, 1], [1, 0], [-1, 0], [0, -1]]
else:
print('conn is not valid. Please enter 0 or 1 for 8-connectivity and 4-connectivity respectively')
return None
edge.put(position)
visited[position[0], position[1]] = 1
flag = False
while edge.empty() == False:
expandPoint = edge.get()
if img[expandPoint[0], expandPoint[1]] > 0:
floodMask[expandPoint[0], expandPoint[1]] = 1
# print("1edge: ",expandPoint,"; value: ", img[expandPoint[0],expandPoint[1]])
for adjacent in connectSet:
# print(adjacent)
edgePoint = np.add(expandPoint, adjacent)
# print("edge: ",edgePoint,"; value: ", img[edgePoint[0],edgePoint[1]],0 <= edgePoint[0] <= dim0-1,0 <= edgePoint[1] <= dim1-1,0 <= edgePoint[0] <= dim0-1 and 0 <= edgePoint[1] <= dim1-1)
if 0 <= edgePoint[0] <= dim0-1 and 0 <= edgePoint[1] <= dim1-1:
# print("edge: ",edgePoint,"; value: ", img[edgePoint[0],edgePoint[1]],visited[edgePoint[0], edgePoint[1]])
if visited[edgePoint[0], edgePoint[1]] == 0 and img[edgePoint[0], edgePoint[1]] > 0:
# print("edge: ",edgePoint,"; value: ", img[edgePoint[0],edgePoint[1]])
floodMask[edgePoint[0], edgePoint[1]] = 1
visited[edgePoint[0], edgePoint[1]] = 1
edge.put(edgePoint)
flag = True
else:
visited[edgePoint[0], edgePoint[1]] = 1
# print("out of bounds or nothing there")
# if flag == True:
# print("sum floodMask:",sum(floodMask.flatten()))
return floodMask
def labelComponents(img, conn):
#for each voxel, put size of the component it is connected to on it
binaryLabels = np.zeros(img.shape)
dim0 = img.shape[0]
dim1 = img.shape[1]
for i in range(dim0):
for j in range(dim1):
binaryLabels = np.add(binaryLabels, flood(img, [i, j], conn))
# print(binaryLabels)
return binaryLabels
def getComponentsThreshold(img, conn, threshold):
componentsAboveThresh = np.zeros(img.shape)
dim0 = img.shape[0]
dim1 = img.shape[1]
componentLabels = labelComponents(img, conn)
#print(np.unique(componentLabels))
for i in range(dim0):
for j in range(dim1):
if componentLabels[i, j] > threshold:
componentsAboveThresh[i, j] = 1
return componentsAboveThresh
def tumor_map_filter():
tumor_pred = model_predict()
#roi = PCa_pred
roi = os.path.join(pred_dir, 'tumor_pred.nii.gz')
try:
atlas = nib.load(roi).get_data()
except:
print('No roi')
roiArr = np.asarray(atlas)
#print(roiArr.shape)
layersWithROI = [] #records the layer number of layers with ROIs marked
for x in range(roiArr.shape[2]):
if sum(roiArr[:, :, x].flatten()) > 0:
layersWithROI.append(x)
filteredROI = np.zeros(roiArr.shape)
for layer in layersWithROI:
filteredROI[:, :, layer] = getComponentsThreshold(roiArr[:, :, layer], conn, threshold)
#TODO: save filteredROI as .nii file
aff = nib.load(roi).get_affine()
filtered_map = nib.Nifti1Image(filteredROI, aff)
#filename = roi[:-4]+ '_' + 'filtered' + '_' + strftime('%d-%b-%Y-%H-%M-%S', gmtime()) + '.nii'
filename = roi[:-4] + '_' + 'filtered' + '_' + str(threshold) + '.nii'
nib.save(filtered_map, filename)
return filtered_map
# np.savetxt(roi_path+"test.csv", labelComponents(roiArr[:,:,9], conn), delimiter=',')
# print(sum(flood(roiArr[:,:,9], [149,104], conn).flatten()))
if __name__ == '__main__':
x_input = range(12, 30)
conn = 0 # if conn=0, 8-connectivity; if 1, then 4-connectivity
threshold = 5 # threshold of elimination (component size)
data_dir = '/mnt/aertslab/USERS/Zezhong/others/pca/exvivo/WU007F11'
out_dir = '/mnt/aertslab/USERS/Zezhong/others/pca/exvivo'
pro_data_dir = '/home/xmuyzz/Harvard_AIM/others/pca/pro_data'
overlaid_map = os.path.join(data_dir, 'DBSI_results_0.1_0.1_0.8_0.8_1.5_1.5/dti_adc_map.nii')
np.set_printoptions(threshold=np.inf)
df_stat = get_roi_data(data_dir, out_dir)
tumor_pred = model_predict(pro_data_dir, out_dir, df_stat, x_input, overlaid_map)
#filtered_map = tumor_map_filter()