-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSimulation(3-4)(new).py
446 lines (418 loc) · 16.5 KB
/
Simulation(3-4)(new).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 23 18:59:23 2020
@author: xmxhuihui
"""
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
from sklearn.neighbors import KernelDensity
import seaborn as sns
from scipy.stats import pearsonr
# Number of excitatory and inhibitory neurons
N_E = 800
N_I = 200
n_neurons = N_E + N_I
total_time = 50000
# All the parameters from Supplementary table from the paper.
W_EI = 0.44
W_IE = 0.66
W_II = 0.54
W_EE = 0.37
W_EI2 = 0.49
W_IE2 = 0.65
W_II2 = 0.53
W_EE2 = 0.26
mu_EI = W_EI
mu_IE = W_IE
mu_II = W_II
sigma_EI2 = W_EI2 - W_EI ** 2
sigma_IE2 = W_IE2 - W_IE2 ** 2
sigma_II2 = W_II2 - W_II ** 2
sigma_EI = np.sqrt(sigma_EI2)
sigma_IE = np.sqrt(sigma_IE2)
sigma_II = np.sqrt(sigma_II2)
#print(str(sigma_EI2) + '\n' + str(sigma_IE2) + '\n' + str(sigma_II2))
lnmu_EI=np.log(mu_EI**2/np.sqrt(mu_EI**2+sigma_EI2))
lnmu_IE=np.log(mu_IE**2/np.sqrt(mu_IE**2+sigma_IE2))
lnmu_II=np.log(mu_II**2/np.sqrt(mu_II**2+sigma_II2))
lnsigma_EI=np.sqrt(np.log(1+sigma_EI2/mu_EI**2))
lnsigma_IE=np.sqrt(np.log(1+sigma_IE2/mu_IE**2))
lnsigma_II=np.sqrt(np.log(1+sigma_II2/mu_II**2))
theta = 33
tau_m = 10
H_E = 77.6
H_I = 57.8
v_R = 24.75
spike = 150
# Extracting E->E connectivity from the spine imaging data
c_EE = 0.2
path = "Global_Spines_info.csv"
spines_info = pd.read_csv(path)
spines_info.drop('Unnamed: 0', axis=1, inplace=True)
spines_IS1 = spines_info.loc[spines_info['Starting Imaging Session'] == 1]
# spines_IS1.head(100)
S = spines_IS1['Volume'].mean()
g = W_EE / S
#print(g)
# Connectivity matrix 8*8
# EI
# I*
c_EE = 0.2
c_EI = 0.4
c_IE = 0.3
c_II = 0.4
W = np.zeros((n_neurons, n_neurons))
for i in range(n_neurons):
for j in range(n_neurons):
if i < N_E:
# E -> E
if j < N_E:
if random.uniform(0, 1) <= c_EE:
index = random.randint(1, 1420)
W[i, j] = spines_info['Volume'].loc[spines_info['Global_SpineID'] == index].values[0] * g
# E -> I
else:
if random.uniform(0, 1) <= c_EI:
W[i, j] = -np.random.lognormal(lnmu_EI, lnsigma_EI)
else:
# I -> E
if j < N_E:
if random.uniform(0, 1) <= c_IE:
W[i, j] = np.random.lognormal(lnmu_IE, lnsigma_IE)
# I -> I
else:
if random.uniform(0, 1) <= c_II:
W[i, j] = -np.random.lognormal(lnmu_II, lnsigma_II)
v_original = np.zeros((n_neurons, total_time+1))
h = np.zeros((n_neurons, total_time+1))
r = np.zeros(n_neurons)
e_firing_time=[[] for i in range(N_E)]
i_firing_time=[[] for i in range(N_I)]
e_firing_rate=[]
i_firing_rate=[]
H=np.zeros(n_neurons)
for i in range(n_neurons):
if(i<N_E):
H[i]=H_E
else:
H[i]=H_I
# Recording the state of each neuron in the last timestep
for i in range(n_neurons):
v_original[i, 0] = v_R
t = range(total_time)
# For excitatory neurons
for dt in t:
h[:, dt] =np.dot(W,np.transpose(r))
v_original[:,dt+1]=v_original[:,dt]+(-v_original[:,dt]/tau_m+h[:,dt]+H/tau_m)*0.1
for i in range(n_neurons):
if v_original[i,dt]==spike:
v_original[i,dt+1]=v_R
if v_original[i,dt+1]>=theta:
v_original[i,dt+1]=spike
r[i]=1
if i < N_E:
e_firing_time[i].append(dt + 1)
else:
i_firing_time[i - N_E].append(dt + 1)
else:
r[i]=0
for j in range(n_neurons):
if j<N_E and len(e_firing_time[j]) != 0:
e_firing_rate.append(len(e_firing_time[j]) / total_time * 1000*10)
elif j>=N_E and len(i_firing_time[j-N_E]) != 0:
i_firing_rate.append(len(i_firing_time[j-N_E]) / total_time * 1000*10)
# Rewiring E-E
W_rEE=W.copy()
for i in range(N_E):
for j in range(N_E):
index = random.randint(1,3688)
W_rEE[i, j] = spines_info['Volume'].loc[spines_info['Global_SpineID'] == index].values[0] * g
v = np.zeros((n_neurons, total_time+1))
h = np.zeros((n_neurons, total_time+1))
r = np.zeros(n_neurons)
e_firing_time_EE=[[] for i in range(N_E)]
i_firing_time_EE=[[] for i in range(N_I)]
e_firing_rate_EE=[]
i_firing_rate_EE=[]
for i in range(n_neurons):
v[i, 0] = v_R
t = range(total_time)
# For excitatory neurons
for dt in t:
h[:, dt] =np.dot(W_rEE,np.transpose(r))
v[:,dt+1]=v[:,dt]+(-v[:,dt]/tau_m+h[:,dt]+H/tau_m)*0.1
for i in range(n_neurons):
if v[i,dt]==spike:
v[i,dt+1]=v_R
if v[i,dt+1]>=theta:
v[i,dt+1]=spike
r[i]=1
if i < N_E:
e_firing_time_EE[i].append(dt + 1)
else:
i_firing_time_EE[i - N_E].append(dt + 1)
else:
r[i]=0
for j in range(n_neurons):
if j<N_E and len(e_firing_time_EE[j]) != 0:
e_firing_rate_EE.append(len(e_firing_time_EE[j]) / total_time * 1000*10)
elif j>=N_E and len(i_firing_time_EE[j-N_E]) != 0:
i_firing_rate_EE.append(len(i_firing_time_EE[j-N_E]) / total_time * 1000*10)
e_firing_rate_mean=np.array(e_firing_rate).mean()
e_firing_rate_EE_mean=np.array(e_firing_rate_EE).mean()
i_firing_rate_mean=np.array(i_firing_rate).mean()
i_firing_rate_EE_mean=np.array(i_firing_rate_EE).mean()
corr_coef_EE_E=pearsonr(e_firing_rate,e_firing_rate_EE)
corr_coef_EE_I=pearsonr(i_firing_rate,i_firing_rate_EE)
# Rewiring E_I
W_rEI=W.copy()
for i in range(N_E):
for j in range(N_E, n_neurons):
W_rEI[i, j] = -np.random.lognormal(lnmu_EI, lnsigma_EI)
v = np.zeros((n_neurons, total_time+1))
h = np.zeros((n_neurons, total_time+1))
r = np.zeros(n_neurons)
e_firing_time_EI=[[] for i in range(N_E)]
i_firing_time_EI=[[] for i in range(N_I)]
e_firing_rate_EI=[]
i_firing_rate_EI=[]
for i in range(n_neurons):
v[i, 0] = v_R
t = range(total_time)
# For excitatory neurons
for dt in t:
h[:, dt] =np.dot(W_rEI,np.transpose(r))
v[:,dt+1]=v[:,dt]+(-v[:,dt]/tau_m+h[:,dt]+H/tau_m)*0.1
for i in range(n_neurons):
if v[i,dt]==spike:
v[i,dt+1]=v_R
if v[i,dt+1]>=theta:
v[i,dt+1]=spike
r[i]=1
if i < N_E:
e_firing_time_EI[i].append(dt + 1)
else:
i_firing_time_EI[i - N_E].append(dt + 1)
else:
r[i]=0
for j in range(n_neurons):
if j<N_E and len(e_firing_time_EI[j]) != 0:
e_firing_rate_EI.append(len(e_firing_time_EI[j]) / total_time * 1000*10)
elif j>=N_E and len(i_firing_time_EI[j-N_E]) != 0:
i_firing_rate_EI.append(len(i_firing_time_EI[j-N_E]) / total_time * 1000*10)
e_firing_rate_mean=np.array(e_firing_rate).mean()
e_firing_rate_EI_mean=np.array(e_firing_rate_EI).mean()
i_firing_rate_mean=np.array(i_firing_rate).mean()
i_firing_rate_EI_mean=np.array(i_firing_rate_EI).mean()
corr_coef_EI_E=pearsonr(e_firing_rate,e_firing_rate_EI)
corr_coef_EI_I=pearsonr(i_firing_rate,i_firing_rate_EI)
# Rewiring I-E
W_rIE=W.copy()
for i in range(N_E, n_neurons):
for j in range(N_E):
W_rIE[i, j] = np.random.lognormal(lnmu_IE, lnsigma_IE)
v = np.zeros((n_neurons, total_time+1))
h = np.zeros((n_neurons, total_time+1))
r = np.zeros(n_neurons)
e_firing_time_IE=[[] for i in range(N_E)]
i_firing_time_IE=[[] for i in range(N_I)]
e_firing_rate_IE=[]
i_firing_rate_IE=[]
for i in range(n_neurons):
v[i, 0] = v_R
t = range(total_time)
# For excitatory neurons
for dt in t:
h[:, dt] =np.dot(W_rIE,np.transpose(r))
v[:,dt+1]=v[:,dt]+(-v[:,dt]/tau_m+h[:,dt]+H/tau_m)*0.1
for i in range(n_neurons):
if v[i,dt]==spike:
v[i,dt+1]=v_R
if v[i,dt+1]>=theta:
v[i,dt+1]=spike
r[i]=1
if i < N_E:
e_firing_time_IE[i].append(dt + 1)
else:
i_firing_time_IE[i - N_E].append(dt + 1)
else:
r[i]=0
for j in range(n_neurons):
if j<N_E and len(e_firing_time_IE[j]) != 0:
e_firing_rate_IE.append(len(e_firing_time_IE[j]) / total_time * 1000*10)
elif j>=N_E and len(i_firing_time_IE[j-N_E]) != 0:
i_firing_rate_IE.append(len(i_firing_time_IE[j-N_E]) / total_time * 1000*10)
e_firing_rate_mean=np.array(e_firing_rate).mean()
e_firing_rate_IE_mean=np.array(e_firing_rate_IE).mean()
i_firing_rate_mean=np.array(i_firing_rate).mean()
i_firing_rate_IE_mean=np.array(i_firing_rate_IE).mean()
corr_coef_IE_E=pearsonr(e_firing_rate,e_firing_rate_IE)
corr_coef_IE_I=pearsonr(i_firing_rate,i_firing_rate_IE)
# Rewiring I-I
W_rII=W.copy()
for i in range(N_E, n_neurons):
for j in range(N_E, n_neurons):
W_rII[i, j] = -np.random.lognormal(lnmu_II, lnsigma_II)
v = np.zeros((n_neurons, total_time+1))
h = np.zeros((n_neurons, total_time+1))
r = np.zeros(n_neurons)
e_firing_time_II=[[] for i in range(N_E)]
i_firing_time_II=[[] for i in range(N_I)]
e_firing_rate_II=[]
i_firing_rate_II=[]
for i in range(n_neurons):
v[i, 0] = v_R
t = range(total_time)
# For excitatory neurons
for dt in t:
h[:, dt] =np.dot(W_rII,np.transpose(r))
v[:,dt+1]=v[:,dt]+(-v[:,dt]/tau_m+h[:,dt]+H/tau_m)*0.1
for i in range(n_neurons):
if v[i,dt]==spike:
v[i,dt+1]=v_R
if v[i,dt+1]>=theta:
v[i,dt+1]=spike
r[i]=1
if i < N_E:
e_firing_time_II[i].append(dt + 1)
else:
i_firing_time_II[i - N_E].append(dt + 1)
else:
r[i]=0
for j in range(n_neurons):
if j<N_E and len(e_firing_time_II[j]) != 0:
e_firing_rate_II.append(len(e_firing_time_II[j]) / total_time * 1000*10)
elif j>=N_E and len(i_firing_time_II[j-N_E]) != 0:
i_firing_rate_II.append(len(i_firing_time_II[j-N_E]) / total_time * 1000*10)
print(e_firing_rate_II)
print(i_firing_rate_II)
e_firing_rate_mean=np.array(e_firing_rate).mean()
e_firing_rate_II_mean=np.array(e_firing_rate_II).mean()
i_firing_rate_mean=np.array(i_firing_rate).mean()
i_firing_rate_II_mean=np.array(i_firing_rate_II).mean()
corr_coef_II_E=pearsonr(e_firing_rate,e_firing_rate_II)
corr_coef_II_I=pearsonr(i_firing_rate,i_firing_rate_II)
# Theoretical method: Equation (32)
W_EE_mean=np.mat(W_rEE[0:N_E,0:N_E]).mean()
W_EI_mean=np.mat(W_rEI[0:N_E,N_E:n_neurons]).mean()
W_IE_mean=np.mat(W_rIE[N_E:n_neurons,0:N_E]).mean()
W_II_mean=np.mat(W_rII[N_E:n_neurons,N_E:n_neurons]).mean()
W_rEE2=np.mat([[W_rEE[i][j]**2 for j in range(n_neurons)] for i in range(n_neurons)])
W_EE2_mean=W_rEE2[0:N_E, 0:N_E].mean()
W_rEI2=np.mat([[W_rEI[i][j]**2 for j in range(n_neurons)] for i in range(n_neurons)])
W_EI2_mean=W_rEI2[0:N_E, N_E:n_neurons].mean()
W_rIE2=np.mat([[W_rIE[i][j]**2 for j in range(n_neurons)] for i in range(n_neurons)])
W_IE2_mean=W_rIE2[N_E:n_neurons, 0:N_E].mean()
W_rII2=np.mat([[W_rII[i][j]**2 for j in range(n_neurons)] for i in range(n_neurons)])
W_II2_mean=W_rII2[N_E:n_neurons, N_E:n_neurons].mean()
v_original_E_mean=e_firing_rate_mean
v_original_I_mean=i_firing_rate_mean
e_firing_rate2=[e_firing_rate[i]**2 for i in range(N_E)]
i_firing_rate2=[i_firing_rate[i]**2 for i in range(N_I)]
v_original_E2_mean=np.array(e_firing_rate2).mean()
v_original_I2_mean=np.array(i_firing_rate2).mean()
sE2=W_EE2*v_original_E2_mean-(W_EE**2)*(v_original_E_mean**2)+W_EI2*v_original_I2_mean-(W_EI**2)*(v_original_I_mean**2)
sI2=W_IE2*v_original_E2_mean-(W_IE**2)*(v_original_E_mean**2)+W_II2*v_original_I2_mean-(W_II**2)*(v_original_I_mean**2)
# 1. E-E Rewiring
v_rEE_E_mean=e_firing_rate_EE_mean
e_firing_rate_EE2=[e_firing_rate_EE[i]**2 for i in range(N_E)]
v_rEE_E2_mean=np.array(e_firing_rate_EE2).mean()
v_rEE_I_mean=i_firing_rate_EE_mean
i_firing_rate_EE2=[i_firing_rate_EE[i]**2 for i in range(N_I)]
v_rEE_I2_mean=np.array(i_firing_rate_EE2).mean()
W_rEE_tilde=np.multiply(W[0:N_E,0:N_E],W_rEE[0:N_E,0:N_E]).mean()
v_rEE_E_tilde=np.multiply(e_firing_rate,e_firing_rate_EE).mean()
v_rEE_I_tilde=np.multiply(i_firing_rate,i_firing_rate_EE).mean()
rho_E_rEE=(-(W_EE**2)*(v_rEE_E_mean**2)+W_rEE_tilde*v_rEE_E_tilde-(W_EI**2)*(v_rEE_I_mean**2)+W_EI2*v_rEE_I_tilde)/sE2
rho_I_rEE=(-(W_IE**2)*(v_rEE_E_mean**2)+W_IE2*v_rEE_E_tilde-(W_II**2)*(v_rEE_I_mean**2)+W_II2*v_rEE_I_tilde)/sI2
# 2. E-I Rewiring
v_rEI_E_mean=e_firing_rate_EI_mean
e_firing_rate_EI2=[e_firing_rate_EI[i]**2 for i in range(N_E)]
v_rEI_E2_mean=np.array(e_firing_rate_EI2).mean()
v_rEI_I_mean=i_firing_rate_EI_mean
i_firing_rate_EI2=[i_firing_rate_EI[i]**2 for i in range(N_I)]
v_rEI_I2_mean=np.array(i_firing_rate_EI2).mean()
W_rEI_tilde=np.multiply(W[0:N_E,N_E:n_neurons],W_rEI[0:N_E,N_E:n_neurons]).mean()
v_rEI_E_tilde=np.multiply(e_firing_rate,e_firing_rate_EI).mean()
v_rEI_I_tilde=np.multiply(i_firing_rate,i_firing_rate_EI).mean()
rho_E_rEI=(-(W_EE**2)*(v_rEI_E_mean**2)+W_EE2*v_rEI_E_tilde-(W_EI**2)*(v_rEI_I_mean**2)+W_rEI_tilde*v_rEI_I_tilde)/sE2
rho_I_rEI=(-(W_IE**2)*(v_rEI_E_mean**2)+W_IE2*v_rEI_E_tilde-(W_II**2)*(v_rEI_I_mean**2)+W_II2*v_rEI_I_tilde)/sI2
# 3. I-E Rewiring
v_rIE_E_mean=e_firing_rate_IE_mean
e_firing_rate_IE2=[e_firing_rate_IE[i]**2 for i in range(N_E)]
v_rIE_E2_mean=np.array(e_firing_rate_IE2).mean()
v_rIE_I_mean=i_firing_rate_IE_mean
i_firing_rate_IE2=[i_firing_rate_IE[i]**2 for i in range(N_I)]
v_rIE_I2_mean=np.array(i_firing_rate_IE2).mean()
W_rIE_tilde=np.multiply(W[N_E:n_neurons,0:N_E],W_rIE[N_E:n_neurons,0:N_E]).mean()
v_rIE_E_tilde=np.multiply(e_firing_rate,e_firing_rate_IE).mean()
v_rIE_I_tilde=np.multiply(i_firing_rate,i_firing_rate_IE).mean()
rho_E_rIE=(-(W_EE**2)*(v_rIE_E_mean**2)+W_EE2*v_rIE_E_tilde-(W_EI**2)*(v_rIE_I_mean**2)+W_EI2*v_rIE_I_tilde)/sE2
rho_I_rIE=(-(W_IE**2)*(v_rIE_E_mean**2)+W_rIE_tilde*v_rIE_E_tilde-(W_II**2)*(v_rIE_I_mean**2)+W_II2*v_rIE_I_tilde)/sI2
# 4. I-I Rewiring
v_rII_E_mean=e_firing_rate_II_mean
e_firing_rate_II2=[e_firing_rate_II[i]**2 for i in range(N_E)]
v_rII_E2_mean=np.array(e_firing_rate_II2).mean()
v_rII_I_mean=i_firing_rate_II_mean
i_firing_rate_II2=[i_firing_rate_II[i]**2 for i in range(N_I)]
v_rII_I2_mean=np.array(i_firing_rate_II2).mean()
W_rII_tilde=np.multiply(W[N_E:n_neurons,N_E:n_neurons],W_rII[N_E:n_neurons,N_E:n_neurons]).mean()
v_rII_E_tilde=np.multiply(e_firing_rate,e_firing_rate_II).mean()
v_rII_I_tilde=np.multiply(i_firing_rate,i_firing_rate_II).mean()
rho_E_rII=(-(W_EE**2)*(v_rII_E_mean**2)+W_EE2*v_rII_E_tilde-(W_EI**2)*(v_rII_I_mean**2)+W_EI2*v_rII_I_tilde)/sE2
rho_I_rII=(-(W_IE**2)*(v_rII_E_mean**2)+W_IE2*v_rII_E_tilde-(W_II**2)*(v_rII_I_mean**2)+W_rII_tilde*v_rII_I_tilde)/sI2
#Plotting figure 3
plt.figure()
plt.subplot(1,4,1)
plt.ylim([-1,1])
plt.scatter([1,2],[corr_coef_EE_E[0],corr_coef_EE_I[0]])
plt.bar([1,2],[rho_E_rEE,rho_I_rEE])
plt.subplot(1,4,2)
plt.ylim([-1,1])
plt.scatter([1,2],[corr_coef_EI_E[0],corr_coef_EI_I[0]])
plt.bar([1,2],[rho_E_rEI,rho_I_rIE])
plt.subplot(1,4,3)
plt.ylim([-1,1])
plt.scatter([1,2],[corr_coef_IE_E[0],corr_coef_IE_I[0]])
plt.bar([1,2],[rho_E_rIE,rho_I_rIE])
plt.subplot(1,4,4)
plt.ylim([-1,1])
plt.scatter([1,2],[corr_coef_II_E[0],corr_coef_II_I[0]])
plt.bar([1,2],[rho_E_rII,rho_I_rII])
# u_E=np.sqrt(N_E)*(H_E+W_EE*v_original_E_mean-np.sqrt(N_I)/np.sqrt(N_E)*W_EI*v_original_I_mean)
# u_I=np.sqrt(N_E)*(H_I+W_IE*v_original_E_mean-np.sqrt(N_I)/np.sqrt(N_E)*W_II*v_original_I_mean)
s_EE2=W_EE2*v_original_E2_mean-(W_EE**2)*(v_original_E_mean**2)
s_rEE2=W_EE2_mean*v_rEE_E2_mean-(W_EE_mean**2)*(v_rEE_E_mean**2)
s_EI2=W_EI2*v_original_I2_mean-(W_EI**2)*(v_original_I_mean**2)
s_rEI2=W_EI2_mean*v_rEI_I2_mean-(W_EI_mean**2)*(v_rEI_I_mean**2)
s_IE2=W_IE2*v_original_E2_mean-(W_IE**2)*(v_original_E_mean**2)
s_rIE2=W_IE2_mean*v_rIE_E2_mean-(W_IE_mean**2)*(v_rIE_E_mean**2)
s_II2=W_II2*v_original_I2_mean-(W_II**2)*(v_original_I_mean**2)
s_rII2=W_II2_mean*v_rII_I2_mean-(W_II_mean**2)*(v_rII_I_mean**2)
u_rEE_E=np.sqrt(N_E)*(H_E+W_EE_mean*v_rEE_E_mean-np.sqrt(N_I)/np.sqrt(N_E)*W_EI*v_rEE_I_mean)
u_rEI_E=np.sqrt(N_E)*(H_E+W_EE*v_rEI_E_mean-np.sqrt(N_I)/np.sqrt(N_E)*W_EI_mean*v_rEI_I_mean)
u_rIE_I=np.sqrt(N_E)*(H_I+W_IE_mean*v_rIE_E_mean-np.sqrt(N_I)/np.sqrt(N_E)*W_II*v_rIE_I_mean)
u_rII_I=np.sqrt(N_E)*(H_I+W_IE*v_rII_E_mean-np.sqrt(N_I)/np.sqrt(N_E)*W_II_mean*v_rII_I_mean)
n_trials=500
h_EE=np.zeros(n_trials)
h_EI=np.zeros(n_trials)
h_IE=np.zeros(n_trials)
h_II=np.zeros(n_trials)
for i in range(n_trials):
eta_E=np.random.normal(0,1)
eta_I=np.random.normal(0,1)
h_EE[i]=u_rEE_E+eta_E*np.sqrt(s_rEE2)+eta_I*np.sqrt(s_EI2)
h_EI[i]=u_rEI_E+eta_E*np.sqrt(s_EE2)+eta_I*np.sqrt(s_rEI2)
h_IE[i]=u_rIE_I+eta_E*np.sqrt(s_rIE2)+eta_I*np.sqrt(s_II2)
h_II[i]=u_rII_I+eta_E*np.sqrt(s_IE2)+eta_I*np.sqrt(s_rII2)
plt.figure()
# plt.xlim(0,2000)
sns.distplot(h_EE,bins=50,kde=True,color='b')
sns.distplot(h_EI,bins=50,kde=True,color='r')
plt.figure()
# plt.xlim(0,2000)
sns.distplot(h_IE,bins=50,kde=True,color='b')
sns.distplot(h_II,bins=50,kde=True,color='r')