-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer.py
343 lines (300 loc) · 14.6 KB
/
transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import pandas as pd
from prettytable import PrettyTable
from configs import get_cfg_defaults
from dataloader import PairDataset, return_dataset
from torch.utils.data import DataLoader
import os
import argparse
import torch
from networks.models import DeepInterAware
from train import DeepInterAwareTrainer
from utools.comm_utils import set_seed, EvaMetric, return_loss
from munch import Munch
from torch.optim.lr_scheduler import CosineAnnealingLR
from tqdm import tqdm
import torch.nn.functional as F
import numpy as np
project_dir = os.path.dirname(os.path.abspath(__file__))
def load_finetune_dataset(cfg,seed):
dataFolder = f'{os.getcwd()}/data/CoVAbDab/'
# antibody = pd.read_csv(dataFolder+'antibody.csv')
# antigen = pd.read_csv(dataFolder+'antigen.csv')
train_data = pd.read_csv(dataFolder+f'finetune_train.csv')
test_data = pd.read_csv(dataFolder+f'finetune_test.csv')
train_dataset=PairDataset(train_data,dataFolder,cfg)
test_dataset=PairDataset(test_data,dataFolder,cfg)
train_loader = DataLoader(train_dataset,shuffle=False, num_workers=0,drop_last=False,batch_size=256)
test_loader = DataLoader(test_dataset,shuffle=False, num_workers=0,drop_last=False,batch_size=256)
return train_loader,test_loader
def train(loader,model,optim,stage,alpha):
float2str = lambda x: '%0.4f' % x
model.train()
loss_epoch = 0
num_batches = len(loader)
f_features, y_label, y_pred ,ag_list=[],[],[],[]
metrics = EvaMetric(task='cls', device=device)
pbar = tqdm(enumerate(loader), total=num_batches)
step=0
# stage = 2
for i, batch in pbar:
batch = Munch({k: v.to(device)
for k, v in batch.items()})
step += 1
inputs = Munch(
batch=batch,
device=device,
stage=stage
)
# optim.zero_grad()
optim.opt.zero_grad()
output = model(inputs)
f_features.append(output.feature.detach().cpu().numpy())
iil_loss = output.iil_loss
sil_loss = output.sil_loss
if inputs.stage == 1:
loss = sil_loss+iil_loss
loss.backward()
loss_info = f'iil_loss {float2str(output.iil_loss.item())} sil_loss {float2str(output.sil_loss.item())} '
else:
loss = (iil_loss + sil_loss) * alpha + output.jcl_loss * (1-alpha)
loss.backward()
loss_info = f'loss {float2str(loss.item())} iil_loss {float2str(iil_loss.item())} sil_loss {float2str(sil_loss.item())} '
# loss.backward()
optim.opt.step()
if stage != 1:
if output.score.shape[-1] == 2:
n = F.softmax(output.score, dim=1)[:, 1]
else:
n = output.score
f_features.append(output.feature.detach().cpu().numpy())
n = F.softmax(output.score, dim=1)[:, 1]
y_label = y_label + batch.label.to("cpu").tolist()
metrics.update(n, batch.label.long())
y_pred = y_pred + n.to("cpu").tolist()
else:
y_label = None
y_pred = None
lr = optim.opt.state_dict()['param_groups'][0]['lr']
pbar.set_description(f"{loss_info} lr {lr}")
# else:
# pbar.set_description(f"train loss {loss.item()} lr {lr} class_weight {self.class_weight}")
# scheduler.step()
# topk=metric_top_k(y_pred,y_label,[10,50,100,500],ag_list)
if stage != 1:
res = metrics.get_metric()
acc, auprc, f1_s, mcc, precision, recall, roc_auc = res.acc, res.auprc, res.f1_s, res.mcc, res.precision, res.recall, res.roc_auc
print(f"Train" + f" AUROC " + str(roc_auc) + " AUPRC " + str(auprc) + " MCC " + str(mcc) + " F1 " + str(
f1_s) + " Accuracy " + str(acc) + " Precision " + str(precision) + " Recall " + str(recall))
metrics.reset()
else:
y_label = None
y_pred = None
res = None
loss_epoch = loss_epoch / num_batches
# res =metrics.get_metric()
epoch_output=Munch(
loss=loss_epoch,
feature_s=f_features,
y_label=y_label,
y_pred=y_pred,
# topk=topk,
res=res
)
return epoch_output
def test(loader,model):
"""
[test,unseen_test] load best model
[val,test_val,unseen_test_val] load current model
:param dataloader: test,unseen_test,val,test_val,unseen_test_val
:return:
"""
num_batches = len(loader)
bcn_q_features,res_dict=[],{}
ag_cluster_id=[]
pbar = tqdm(enumerate(loader), total=num_batches)
metrics = EvaMetric(task='cls', device=device)
iil_metric = EvaMetric(task='cls', device=device)
sil_metric = EvaMetric(task='cls', device=device)
stage =2
y_pred,y_label,ag_list,iil_pred,sil_pred=[],[],[],[],[]
with torch.no_grad():
model.eval()
for i, batch in pbar:
batch = Munch({k: v.to(device)
for k, v in batch.items()})
inputs = Munch(
batch=batch,
device=device,
# is_mixup=False,
mode='test',
stage=stage
)
output = model(inputs)
iil_n = F.softmax(output.iil_pred, dim=1)[:, 1]
sil_n = F.softmax(output.sil_pred, dim=1)[:, 1]
iil_metric.update(iil_n, batch.label.long())
sil_metric.update(sil_n, batch.label.long())
out_loss = return_loss(output.score, batch.label)
n = out_loss.n
metrics.update(n, batch.label.long())
loss = out_loss.loss
bcn_q_features.append(output.feature.detach().cpu().numpy())
y_label = y_label + batch.label.to("cpu").tolist()
y_pred = y_pred + n.to("cpu").tolist()
iil_pred = iil_pred + iil_n.to("cpu").tolist()
sil_pred = sil_pred + sil_n.to("cpu").tolist()
ag_list=ag_list+batch.ag_id.to("cpu").tolist()
res1=metrics.get_metric()
metrics.reset()
res_dict['IILModule']=iil_metric.get_metric()
res_dict['SILModule']=sil_metric.get_metric()
iil_metric.reset()
sil_metric.reset()
features=np.concatenate(bcn_q_features)
iil_pred=np.array(iil_pred)
sil_pred=np.array(sil_pred)
acc1, auprc1, f1_s1, mcc1, precision1, recall1, roc_auc1 = res1.acc, res1.auprc, res1.f1_s, res1.mcc, res1.precision, res1.recall, res1.roc_auc
print(f"Test AUROC " + str(roc_auc1) + " AUPRC " + str(auprc1) + " MCC " + str(
mcc1) + " F1 " + str(f1_s1) + " Accuracy " + str(acc1) + " Precision " + str(precision1) + " Recall " + str(
recall1))
for model_name, block_res in res_dict.items():
block_acc, block_auprc, block_f1_s, block_mcc, block_precision, block_recall, block_roc_auc = block_res.acc, block_res.auprc, block_res.f1_s, block_res.mcc, block_res.precision, block_res.recall, block_res.roc_auc
print(f'{model_name} '+" AUROC "
+ str(block_roc_auc) + " AUPRC " + str(block_auprc) + " MCC " + str(block_mcc) + " F1 " +
str(block_f1_s) + " Accuracy " + str(block_acc) + " Precision " + str(block_precision) + " Recall " + str(block_recall))
return features,np.array(y_pred),np.array(y_label),np.array(ag_list),iil_pred,sil_pred,res1
def merge_finetune(train_loader, test_loader, model, save_file_path, freeze, alpha):
best_roc_auc = 0
header = ["Epoch", "ROC_AUC", "AUPRC", 'MCC', 'Accuracy', 'F1', 'Precision', 'Recall']
result_table = PrettyTable(header)
float2str = lambda x: '%0.4f' % x
if freeze:
optims = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)
else:
optims = Munch()
parameters = [{'params': model.parameters()}]
opt = torch.optim.Adam(parameters)
optims['opt'] = opt
# scheduler = CosineAnnealingLR(optim, T_max=50, eta_min=1e-5)
for epoch in range(150):
print(f"train epoch {epoch}")
if 0 <= epoch <= 75:
stage = 1
else:
stage = 2
# epoch_output = new_merge_train(train_loader, model, optims,stage,alpha)
epoch_output = train(train_loader, model, optims, stage, alpha)
# scheduler.step()
features, y_pred, y_label, ag_list, y_pred2, y_pred3, test_res = test(test_loader,model)
if stage == 2:
# res = epoch_output.res
acc, auprc, f1_s, mcc, precision, recall, roc_auc = test_res.acc, test_res.auprc, test_res.f1_s, test_res.mcc, test_res.precision, test_res.recall, test_res.roc_auc
metric_list = [str(epoch)] + list(
map(float2str, [roc_auc, auprc, mcc, acc, f1_s, precision, recall]))
result_table.add_row(metric_list)
if roc_auc > best_roc_auc:
checkpoint = {
'model_state_dict': model.state_dict(),
'epoch': epoch
}
# torch.save(self.model.state_dict(), os.path.join(self.save_file_path, f"best_model_{topk}.pth"))
torch.save(checkpoint, os.path.join(save_file_path, f"best_finetune_model.pth"))
best_roc_auc = roc_auc
# metric_list = [str(epoch)] + list(
# map(float2str, [roc_auc, auprc, mcc, acc, f1_s,precision, recall]))+result_list
# result_table.add_row(metric_list)
return result_table
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="antibody-antigen binding affinity prediction")
parser.add_argument('--config', default=f'{project_dir}/configs/HIV.yml', type=str, metavar='S', help='pretrain model')
parser.add_argument('--model_path', default=f'{project_dir}/save_models/', type=str, metavar='S', help='pretrain model')
parser.add_argument('--gpu', default=0, type=int, metavar='S', help='run GPU number')
parser.add_argument('--alpha', default=0.4, type=float, metavar='S', help='run GPU number')
parser.add_argument('--data', default='./data', type=str, metavar='TASK',help='data path')
parser.add_argument('--unseen_task', default='transfer', type=str, metavar='TASK',help='data path')
parser.add_argument('--freeze', action='store_true', help='freeze model')
parser.add_argument('--train_epoch',default=50, type=int, help='freeze model')
parser.add_argument('--finetune_epoch',default=100, type=int, help='freeze model')
parser.add_argument('--end_epoch', default=30, type=int, metavar='S', help='dataset')
parser.add_argument('--save_best', action='store_true')
parser.add_argument('--metric_type', default='roc_auc', type=str, metavar='S', help='dataset')
parser.add_argument('--batch_size', default=32, type=int, metavar='S', help='dataset')
args = parser.parse_args()
# model_name =args.model_name
device = torch.device(f'cuda:{args.gpu}' if torch.cuda.is_available() else 'cpu')
# dataFolder = f'{args.data}/data/'
dataFolder = f'{os.getcwd()}/data/HIV/'
cfg = get_cfg_defaults()
cfg.merge_from_file(args.config)
cfg.set.unseen_task = args.unseen_task
cfg.set.alpha = args.alpha
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
for seed in range(0,5):
set_seed(seed)
model = DeepInterAware(cfg)
opt = torch.optim.Adam(model.parameters(), lr=cfg.solver.lr, weight_decay=cfg.solver.weight_decay)
model = model.to(device)
scheduler = CosineAnnealingLR(opt, T_max=50, eta_min=1e-5)
# if not os.path.exists(args.model_path+'HIV.pth'):
#
# cfg.solver.seed = seed
# train_dataset, val_dataset, unseen_dataset= return_dataset(cfg, dataFolder)
# params = {'batch_size': args.batch_size, 'shuffle': True, 'num_workers': cfg.solver.num_workers,
# 'drop_last': True}
#
#
#
# train_dataloader = DataLoader(train_dataset, sampler=None, **params)
# params['shuffle'] = True
# params['drop_last'] = False
# val_dataloader = DataLoader(val_dataset, **params)
# if unseen_dataset != None:
# unseen_dataloader = DataLoader(unseen_dataset, sampler=None, **params)
# else:
# unseen_dataloader = None
#
#
# trainer_parameter = Munch(
# device=device,
# current_epoch=0,
# save_best=args.save_best,
# metric_type=args.metric_type,
# sampler=False,
# # start_epoch=args.start_epoch,
# end_epoch=args.end_epoch,
# model=model,
# opt=opt,
# scheduler=scheduler,
# cfg=cfg,
# # cfg=cfg
# )
# trainer_parameter.train_dataloader = train_dataloader
# trainer_parameter.val_dataloader = val_dataloader
# trainer_parameter.unseen_dataloader = unseen_dataloader
#
# trainer = DeepInterAwareTrainer(trainer_parameter)
# print()
# print(f"Directory for saving result: {trainer.save_file_path}")
# result = trainer.train()
#
# with open(os.path.join(trainer.save_file_path, "model_architecture.txt"), "w") as wf:
# wf.write(str(model))
print("Finetune on the CoVAbDab dataset")
train_loader, test_loader = load_finetune_dataset(cfg,seed)
state_dict = torch.load(args.model_path+'HIV.pth')
# model = DeepInterAware(cfg)
# print(state_dict['model_state_dict'].keys())
model.load_state_dict(state_dict)
if args.freeze:
for name, param in model.named_parameters():
if 'out_linear2' not in name :
param.requires_grad = False
# 检查参数是否冻结
# for name, param in model.named_parameters():
# print(name, param.requires_grad)
model = model.to(device)
result_table = merge_finetune(train_loader, test_loader, model, args.model_path, args.freeze, args.alpha)
file = os.path.join(args.model_path, f"CoVAbDab_{seed}_{args.alpha}.csv")
with open(file, "w") as fp:
fp.write(result_table.get_csv_string())