-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpretrain_smiles_embedding.py
148 lines (128 loc) · 5.1 KB
/
pretrain_smiles_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import dgl
import errno
import numpy as np
import os
import torch
from dgl.nn.pytorch.glob import AvgPooling
from dgllife.model import load_pretrained
from dgllife.utils import mol_to_bigraph, PretrainAtomFeaturizer, PretrainBondFeaturizer
from rdkit import Chem
from torch.utils.data import DataLoader
import pandas as pd
from argparse import ArgumentParser
from dgllife.utils import load_smiles_from_txt
def mkdir_p(path, log=True):
"""Create a directory for the specified path.
Parameters
----------
path : str
Path name
log : bool
Whether to print result for directory creation
"""
try:
os.makedirs(path)
if log:
print('Created directory {}'.format(path))
except OSError as exc:
if exc.errno == errno.EEXIST and os.path.isdir(path) and log:
print('Directory {} already exists.'.format(path))
else:
raise
def graph_construction_and_featurization(smiles):
"""Construct graphs from SMILES and featurize them
Parameters
----------
smiles : list of str
SMILES of molecules for embedding computation
Returns
-------
list of DGLGraph
List of graphs constructed and featurized
list of bool
Indicators for whether the SMILES string can be
parsed by RDKit
"""
# print(len(smiles))
graphs = []
success = []
for smi in smiles:
try:
mol = Chem.MolFromSmiles(smi)
# print(mol is None)
if mol is None:
success.append(False)
continue
# # print(mol)
# print('it can go there.')
g = mol_to_bigraph(mol, add_self_loop=True,
node_featurizer=PretrainAtomFeaturizer(),
edge_featurizer=PretrainBondFeaturizer(),
canonical_atom_order=False)
# print('it can also go there.')
graphs.append(g)
success.append(True)
print(len(graphs))
except:
success.append(False)
# print(len(graphs))
return graphs, success
def collate(graphs):
return dgl.batch(graphs)
def main(args, dataset, name):
data_loader = DataLoader(dataset, batch_size=args['batch_size'],
collate_fn=collate, shuffle=False)
model = load_pretrained(args['model']).to(args['device'])
model.eval()
readout = AvgPooling()
mol_emb = []
for batch_id, bg in enumerate(data_loader):
print('Processing batch {:d}/{:d}'.format(batch_id + 1, len(data_loader)))
nfeats = [bg.ndata.pop('atomic_number').to(args['device']),
bg.ndata.pop('chirality_type').to(args['device'])]
efeats = [bg.edata.pop('bond_type').to(args['device']),
bg.edata.pop('bond_direction_type').to(args['device'])]
with torch.no_grad():
node_repr = model(bg, nfeats, efeats)
mol_emb.append(readout(bg, node_repr))
print(len(mol_emb))
mol_emb = torch.cat(mol_emb, dim=0).detach().cpu().numpy()
np.save(args['out_dir'] + '/' + name + '.npy', mol_emb)
if __name__ == '__main__':
parser = ArgumentParser("Molecule Embedding Computation with Pre-trained Models")
parser.add_argument('-fi', '--file', type=str,
help="Path to the file of SMILES")
parser.add_argument('-fo', '--format', choices=['txt', 'csv'], default='csv',
help="Format for the file of SMILES (default: 'txt')")
parser.add_argument('-sc', '--smiles-column', type=str,
help="Column for SMILES in the CSV file.")
parser.add_argument('-m', '--model', choices=['gin_supervised_contextpred',
'gin_supervised_infomax',
'gin_supervised_edgepred',
'gin_supervised_masking'],
help='Pre-trained model to use for computing molecule embeddings')
parser.add_argument('-b', '--batch-size', type=int, default=256,
help='Batch size for embedding computation')
parser.add_argument('-o', '--out-dir', type=str, default='./data/DRKG',
help='Path to the computation results')
args = parser.parse_args().__dict__
mkdir_p(args['out_dir'])
if torch.cuda.is_available():
args['device'] = torch.device('cuda:0')
else:
args['device'] = torch.device('cpu')
if args['format'] == 'txt':
smiles = load_smiles_from_txt(args['file'])
else:
df = pd.read_csv(args['file'])
smiles = df[args['smiles_column']].tolist()
print(len(smiles))
# 文件命名格式以数据集文件名字命名
name = args['file'].split('/')[-1].split('.')[0]
dataset, success = graph_construction_and_featurization(smiles)
# np.save(args['out_dir'] + '/mol_parsed.npy', np.array(success))
main(args, dataset, name)