This repository hosts the solvers of the paper:
"Fundamental Matrix Estimation Using Relative Depths" ECCV 2024. [Paper][Supp]
"Fixing the Scale and Shift in Monocular Depth For Camera Pose Estimation" Arxiv 2025. [Paper]
We used [graph-cut ransac] for robust estimation. The evaluation script is based on [homography-benchmark]
Install in Conda environment
git clone https://github.com/yaqding/pose_monodepth.git
conda create -n posemono python=3.9
conda activate posemono
cd graph-cut-ransac
python -m pip install .
cd ..
pip install -r requirements.txt
An example data can be downloaded [here]
More details come soon.
Run the test code by specifically typing the scene, solver and depth name, e.g.,
python test_calibrated.py --path 'pathtodata' --scene 'british_museum' --solver 'mono' --depth 'unidepth'
which solves the calibrated relative pose problem using 3 points with their monodepths.
📁 graph-cut-ransac/src/pygcransac/include/estimators
: contains the code of all the solvers.
solver_fundamental_matrix_4p4d - general fundamental matrix estimation
solver_fundamental_matrix_4p3d - varying focal lengths problem
solver_fundamental_matrix_3p3d - equal and unknown focal length
Calibrated case:
solver_essential_matrix_mono_suv - closed-form solution, fastest. -
solver_essential_matrix_mono_suv_GB - Gröbner basis solution. -
solver_essential_matrix_mono_suv_Eigen - polynomial eigenvalue solution. -
solver_essential_matrix_mono_suv_inverse - inverse depth model (not practical). -
Solver | G-J | Eigen | Poly | Time( |
---|---|---|---|---|
|
12 × 16 | 4 × 4 | - | 4.45 |
|
6 × 10 | 4 × 4 | - | 3.42 |
|
3 × 6 | - | 4 | 1.46 |
|
54 × 66 | 12 × 12 | - | 36.9 |
Equal and unknown focal length:
solver_fundamental_matrix_mono_suvf_GB - Gröbner basis solution. -
solver_fundamental_matrix_mono_suvf_Eigen - polynomial eigenvalue solution. -
Solver | G-J | Eigen | Time( |
---|---|---|---|
|
24 × 32 | 8 × 8 | 12.5 |
|
6 × 8 | 2 × 2 | 2.38 |
Varying focal lengths:
solver_fundamental_matrix_mono_suvfvar_GB - Gröbner basis solution. -
solver_fundamental_matrix_mono_suvfvar_Eigen - polynomial eigenvalue solution. -
Solver | G-J | Eigen | Time( |
---|---|---|---|
|
20 × 24 | 4 × 4 | 6.45 |
|
6 × 8 | 2 × 2 | 2.49 |
@inproceedings{ding2025fundamental,
title={Fundamental matrix estimation using relative depths},
author={Ding, Yaqing and V{\'a}vra, V{\'a}clav and Bhayani, Snehal and Wu, Qianliang and Yang, Jian and Kukelova, Zuzana},
booktitle={European Conference on Computer Vision},
pages={142--159},
year={2025},
organization={Springer}
}
@article{ding2025fixing,
title={Fixing the Scale and Shift in Monocular Depth For Camera Pose Estimation},
author={Ding, Yaqing and V{\'a}vra, V{\'a}clav and Kocur, Viktor and Yang, Jian and Sattler, Torsten and Kukelova, Zuzana},
journal = {arXiv preprint arXiv:2501.07742},
year={2025}
}