You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (6,) + inhomogeneous part.
#28
--- load weight finish ---
Setting up a new session...
Max_iter = 120000, Batch_size = 20
Model will train on cuda:[0]
--- Focal_loss alpha = 0.25 ,将对背景类进行衰减,请在目标检测任务中使用 ---
--- Multiboxloss : α=0.25 γ=2 num_classes=21
Set optimizer : SGD (
Parameter Group 0
dampening: 0
initial_lr: 0.001
lr: 0.001
momentum: 0.9
nesterov: False
weight_decay: 0.0005
)
Set scheduler : <torch.optim.lr_scheduler.MultiStepLR object at 0x00000248040508B0>
Set lossfunc : multiboxloss(
(loc_loss_fn): SmoothL1Loss()
(cls_loss_fn): focal_loss()
)
Start Train......
Traceback (most recent call last):
File "D:\software\PyCharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\pydevd.py", line 1491, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "D:\software\PyCharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev_pydev_imps_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "D:/code/ai/Retinanet/Retinanet-Pytorch-master/Demo_train.py", line 36, in
trainer(net, train_dataset)
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Model\trainer.py", line 112, in call
for iteration, (images, boxes, labels, image_names) in enumerate(data_loader):
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 435, in next
data = self._next_data()
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 1085, in _next_data
return self._process_data(data)
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 1111, in _process_data
data.reraise()
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch_utils.py", line 428, in reraise
raise self.exc_type(msg)
ValueError: Caught ValueError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\worker.py", line 198, in _worker_loop
data = fetcher.fetch(index)
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Dataset_VOC.py", line 48, in getitem
image, boxes, labels = self.transform(image, boxes, labels)
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Transfroms.py", line 40, in call
img, boxes, labels = t(img, boxes, labels)
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Transfroms_utils.py", line 263, in call
mode = random.choice(self.sample_options)
File "mtrand.pyx", line 920, in numpy.random.mtrand.RandomState.choice
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (6,) + inhomogeneous part.
请问这是什么原因导致的呀
The text was updated successfully, but these errors were encountered:
--- load weight finish ---
Setting up a new session...
Max_iter = 120000, Batch_size = 20
Model will train on cuda:[0]
--- Focal_loss alpha = 0.25 ,将对背景类进行衰减,请在目标检测任务中使用 ---
--- Multiboxloss : α=0.25 γ=2 num_classes=21
Set optimizer : SGD (
Parameter Group 0
dampening: 0
initial_lr: 0.001
lr: 0.001
momentum: 0.9
nesterov: False
weight_decay: 0.0005
)
Set scheduler : <torch.optim.lr_scheduler.MultiStepLR object at 0x00000248040508B0>
Set lossfunc : multiboxloss(
(loc_loss_fn): SmoothL1Loss()
(cls_loss_fn): focal_loss()
)
Start Train......
Traceback (most recent call last):
File "D:\software\PyCharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\pydevd.py", line 1491, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "D:\software\PyCharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev_pydev_imps_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "D:/code/ai/Retinanet/Retinanet-Pytorch-master/Demo_train.py", line 36, in
trainer(net, train_dataset)
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Model\trainer.py", line 112, in call
for iteration, (images, boxes, labels, image_names) in enumerate(data_loader):
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 435, in next
data = self._next_data()
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 1085, in _next_data
return self._process_data(data)
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 1111, in _process_data
data.reraise()
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch_utils.py", line 428, in reraise
raise self.exc_type(msg)
ValueError: Caught ValueError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\worker.py", line 198, in _worker_loop
data = fetcher.fetch(index)
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Dataset_VOC.py", line 48, in getitem
image, boxes, labels = self.transform(image, boxes, labels)
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Transfroms.py", line 40, in call
img, boxes, labels = t(img, boxes, labels)
File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Transfroms_utils.py", line 263, in call
mode = random.choice(self.sample_options)
File "mtrand.pyx", line 920, in numpy.random.mtrand.RandomState.choice
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (6,) + inhomogeneous part.
请问这是什么原因导致的呀
The text was updated successfully, but these errors were encountered: