-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathinfer_gui.py
326 lines (304 loc) · 14.4 KB
/
infer_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import _thread
import argparse
import asyncio
import functools
import json
import os
import queue
import time
import tkinter.messagebox
import wave
from tkinter import *
from tkinter.filedialog import askopenfilename
import numpy as np
import pyaudio
import soundcard
import requests
import soundfile
import websockets
from ppasr.predict import PPASRPredictor
from ppasr.utils.logger import setup_logger
from ppasr.utils.utils import add_arguments, print_arguments
logger = setup_logger(__name__)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('configs', str, 'configs/conformer.yml', "配置文件")
add_arg('use_server', bool, False, "是否使用服务器服务进行识别,否则使用本地识别")
add_arg("host", str, "127.0.0.1", "服务器IP地址")
add_arg("port_server", int, 5000, "普通识别服务端口号")
add_arg("port_stream", int, 5001, "流式识别服务端口号")
add_arg('use_gpu', bool, True, "是否使用GPU预测")
add_arg('use_pun', bool, False, "是否给识别结果加标点符号")
add_arg('model_path', str, 'models/conformer_streaming_fbank/infer', "导出的预测模型文件路径")
add_arg('pun_model_dir', str, 'models/pun_models/', "加标点符号的模型文件夹路径")
args = parser.parse_args()
print_arguments(args=args)
class SpeechRecognitionApp:
def __init__(self, window: Tk, args):
self.window = window
self.wav_path = None
self.predicting = False
self.playing = False
self.recording = False
self.stream = None
self.is_itn = False
self.use_server = args.use_server
# 录音参数
self.frames = []
self.data_queue = queue.Queue()
self.sample_rate = 16000
interval_time = 0.5
self.block_size = int(self.sample_rate * interval_time)
# 最大录音时长
self.max_record = 600
# 录音保存的路径
self.output_path = 'dataset/record'
# 指定窗口标题
self.window.title("夜雨飘零语音识别")
# 固定窗口大小
self.window.geometry('870x500')
self.window.resizable(False, False)
# 识别短语音按钮
self.short_button = Button(self.window, text="选择短语音识别", width=20, command=self.predict_audio_thread)
self.short_button.place(x=10, y=10)
# 识别长语音按钮
self.long_button = Button(self.window, text="选择长语音识别", width=20, command=self.predict_long_audio_thread)
self.long_button.place(x=170, y=10)
# 录音按钮
self.record_button = Button(self.window, text="录音识别", width=20, command=self.record_audio_thread)
self.record_button.place(x=330, y=10)
# 播放音频按钮
self.play_button = Button(self.window, text="播放音频", width=20, command=self.play_audio_thread)
self.play_button.place(x=490, y=10)
# 输出结果文本框
self.result_label = Label(self.window, text="输出日志:")
self.result_label.place(x=10, y=70)
self.result_text = Text(self.window, width=120, height=30)
self.result_text.place(x=10, y=100)
# 对文本进行反标准化
self.an_frame = Frame(self.window)
self.check_var = BooleanVar(value=False)
self.is_itn_check = Checkbutton(self.an_frame, text='是否对文本进行反标准化', variable=self.check_var,
command=self.is_itn_state)
self.is_itn_check.grid(row=0)
self.an_frame.grid(row=1)
self.an_frame.place(x=700, y=10)
if not self.use_server:
# 获取识别器
self.predictor = PPASRPredictor(configs=args.configs,
model_path=args.model_path,
use_gpu=args.use_gpu,
use_pun=args.use_pun,
pun_model_dir=args.pun_model_dir)
# 是否对文本进行反标准化
def is_itn_state(self):
self.is_itn = self.check_var.get()
# 预测短语音线程
def predict_audio_thread(self):
if not self.predicting:
self.wav_path = askopenfilename(filetypes=[("音频文件", "*.wav"), ("音频文件", "*.mp3")],
initialdir='./dataset')
if self.wav_path == '': return
self.result_text.delete('1.0', 'end')
self.result_text.insert(END, "已选择音频文件:%s\n" % self.wav_path)
self.result_text.insert(END, "正在识别中...\n")
_thread.start_new_thread(self.predict_audio, (self.wav_path,))
else:
tkinter.messagebox.showwarning('警告', '正在预测,请等待上一轮预测结束!')
# 预测长语音线程
def predict_long_audio_thread(self):
if not self.predicting:
self.wav_path = askopenfilename(filetypes=[("音频文件", "*.wav"), ("音频文件", "*.mp3")],
initialdir='./dataset')
if self.wav_path == '': return
self.result_text.delete('1.0', 'end')
self.result_text.insert(END, "已选择音频文件:%s\n" % self.wav_path)
self.result_text.insert(END, "正在识别中...\n")
_thread.start_new_thread(self.predict_long_audio, (self.wav_path,))
else:
tkinter.messagebox.showwarning('警告', '正在预测,请等待上一轮预测结束!')
# 录音识别线程
def record_audio_thread(self):
if not self.playing and not self.recording:
self.result_text.delete('1.0', 'end')
self.recording = True
if not self.use_server:
_thread.start_new_thread(self.record_audio, ())
_thread.start_new_thread(self.predict_stream, ())
else:
if self.playing:
tkinter.messagebox.showwarning('警告', '正在录音,无法播放音频!')
else:
# 停止录音
self.recording = False
# 播放音频线程
def play_audio_thread(self):
if self.wav_path is None or self.wav_path == '':
tkinter.messagebox.showwarning('警告', '音频路径为空!')
else:
if not self.playing and not self.recording:
_thread.start_new_thread(self.play_audio, ())
else:
if self.recording:
tkinter.messagebox.showwarning('警告', '正在录音,无法播放音频!')
else:
# 停止播放
self.playing = False
def record_audio(self):
self.frames = []
self.record_button.configure(text='停止录音')
self.result_text.insert(END, "正在录音...\n")
# 打开默认的输入设备
input_device = soundcard.default_microphone()
recorder = input_device.recorder(samplerate=self.sample_rate, channels=1, blocksize=self.block_size)
with recorder:
while True:
# 开始录制并获取数据
data = recorder.record(numframes=self.block_size)
data = data.squeeze()
self.frames.append(data)
self.data_queue.put(data)
if not self.recording: break
self.recording = False
# 播放音频
def play_audio(self):
self.play_button.configure(text='停止播放')
self.playing = True
default_speaker = soundcard.default_speaker()
data, sr = soundfile.read(self.wav_path)
with default_speaker.player(samplerate=sr) as player:
for i in range(0, data.shape[0], sr):
if not self.playing: break
d = data[i:i + sr]
player.play(d)
self.playing = False
self.play_button.configure(text='播放音频')
def predict_stream(self):
if not self.use_server:
# 本地识别
while self.recording:
try:
data = self.data_queue.get(timeout=1)
except queue.Empty:
continue
# 在这里处理数据
result = self.predictor.predict_stream(audio_data=data, use_pun=args.use_pun, is_itn=self.is_itn,
is_end=not self.recording, sample_rate=self.sample_rate)
if result is None: continue
score, text = result['score'], result['text']
self.result_text.delete('1.0', 'end')
self.result_text.insert(END, f"{text}\n")
self.predictor.reset_stream()
# 拼接录音数据
data = np.concatenate(self.frames)
# 保存音频数据
os.makedirs(self.output_path, exist_ok=True)
self.wav_path = os.path.join(self.output_path, '%s.wav' % str(int(time.time())))
soundfile.write(self.wav_path, data=data, samplerate=self.sample_rate)
self.result_text.insert(END, "录音已结束,录音文件保存在:%s\n" % self.wav_path)
self.record_button.configure(text='录音识别')
else:
# 调用服务接口
new_loop = asyncio.new_event_loop()
new_loop.run_until_complete(self.run_websocket())
# 预测短语音
def predict_audio(self, wav_file):
self.predicting = True
try:
start = time.time()
# 判断使用本地识别还是调用服务接口
if not self.use_server:
result = self.predictor.predict(audio_data=wav_file, use_pun=args.use_pun, is_itn=self.is_itn)
score, text = result['score'], result['text']
else:
# 调用用服务接口识别
url = f"http://{args.host}:{args.port_server}/recognition"
files = [('audio', ('test.wav', open(wav_file, 'rb'), 'audio/wav'))]
headers = {'accept': 'application/json'}
response = requests.post(url, headers=headers, files=files)
data = json.loads(response.text)
if data['code'] != 0:
raise Exception(f'服务请求失败,错误信息:{data["msg"]}')
text, score = data['result'], data['score']
self.result_text.insert(END,
f"消耗时间:{int(round((time.time() - start) * 1000))}ms, 识别结果: {text}, 得分: {score}\n")
except Exception as e:
self.result_text.insert(END, str(e))
logger.error(e)
self.predicting = False
# 预测长语音
def predict_long_audio(self, wav_path):
self.predicting = True
try:
start = time.time()
# 判断使用本地识别还是调用服务接口
if not self.use_server:
result = self.predictor.predict_long(audio_data=wav_path, use_pun=args.use_pun, is_itn=self.is_itn)
score, text = result['score'], result['text']
else:
# 调用用服务接口识别
url = f"http://{args.host}:{args.port_server}/recognition_long_audio"
files = [('audio', ('test.wav', open(wav_path, 'rb'), 'audio/wav'))]
headers = {'accept': 'application/json'}
response = requests.post(url, headers=headers, files=files)
data = json.loads(response.text)
if data['code'] != 0:
raise Exception(f'服务请求失败,错误信息:{data["msg"]}')
text, score = data['result'], data['score']
self.result_text.insert(END, "=====================================================\n")
self.result_text.insert(END,
f"最终结果,消耗时间:{int(round((time.time() - start) * 1000))}, 得分: {score}, 识别结果: {text}\n")
except Exception as e:
self.result_text.insert(END, str(e))
logger.error(e)
self.predicting = False
# 使用WebSocket调用实时语音识别服务
async def run_websocket(self):
self.frames = []
self.record_button.configure(text='停止录音')
self.result_text.insert(END, "正在录音...\n")
# 创建一个播放器
p = pyaudio.PyAudio()
# 打开录音
stream = p.open(format=pyaudio.paInt16,
channels=1,
rate=self.sample_rate,
input=True,
frames_per_buffer=self.block_size)
async with websockets.connect(f"ws://{args.host}:{args.port_stream}") as websocket:
while not websocket.closed:
data = stream.read(self.block_size)
self.frames.append(data)
send_data = data
# 用户点击停止录音按钮
if not self.recording:
send_data += b'end'
await websocket.send(send_data)
result = await websocket.recv()
self.result_text.delete('1.0', 'end')
self.result_text.insert(END, f"{json.loads(result)['result']}\n")
# 停止录音后,需要把"end"发给服务器才最终停止
if not self.recording and b'end' == send_data[-3:]:
logger.info('识别结束')
break
# await websocket.close()
stream.close()
# 录音的字节数据,用于后面的预测和保存
audio_bytes = b''.join(self.frames)
# 保存音频数据
os.makedirs(self.output_path, exist_ok=True)
self.wav_path = os.path.join(self.output_path, '%s.wav' % str(int(time.time())))
wf = wave.open(self.wav_path, 'wb')
wf.setnchannels(1)
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
wf.setframerate(self.sample_rate)
wf.writeframes(audio_bytes)
wf.close()
self.recording = False
self.result_text.insert(END, "录音已结束,录音文件保存在:%s\n" % self.wav_path)
self.record_button.configure(text='录音识别')
logger.info('close websocket')
tk = Tk()
myapp = SpeechRecognitionApp(tk, args)
if __name__ == '__main__':
tk.mainloop()