-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathheap_sort.cpp
82 lines (75 loc) · 2 KB
/
heap_sort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// 堆排序
#include <headers.hpp>
#include <max_heap.hpp>
template <typename T> void __shiftDown(T arr[], int n, int k) {
while (2 * k + 1 < n) {
int j = 2 * k + 1; // 在此轮循环中,arr[k]和arr[j]交换位置
if (j + 1 < n && arr[j + 1] > arr[j]) {
j += 1;
}
if (arr[k] >= arr[j]) {
break;
}
swap(arr[k], arr[j]);
k = j;
}
}
template <typename T> void heapSort(T arr[], int n) {
// heapify
// 从(最后一个元素的索引-1)/2开始
// 最后一个元素的索引 = n-1
for (int i = (n - 1 - 1) / 2; i >= 0; i--) {
__shiftDown(arr, n, i);
}
for (int i = n - 1; i > 0; i--) {
swap(arr[0], arr[i]);
__shiftDown(arr, i, 0);
}
}
class Solution {
public:
vector<int> heapSort(vector<int> &nums) {
::heapSort(&nums[0], nums.size());
return nums;
}
/**
* @brief 堆排序
* nlogn
* @param nums
* @return vector<int>
*/
vector<int> heapSort1(vector<int> &nums) {
MaxHeap<int> maxHeap = MaxHeap<int>(nums.size());
for (int i = 0; i < nums.size(); i++) {
maxHeap.insert(nums[i]);
}
// 从小到大排序,extractMax得到的是从大到小
vector<int> res = vector<int>(nums.size());
for (int i = nums.size() - 1; i >= 0; i--) {
res[i] = maxHeap.extractMax();
}
return res;
}
/**
* @brief 堆排序 (Heapify)
* Heapify的算法复杂度:将n个元素逐个插入到一个空堆中,算法复杂度是O(nlogn)
* Heapify的过程,算法复杂度是O(n)
* 堆排序的整体算法复杂度是O(nlogn)
* @param nums
* @return vector<int>
*/
vector<int> heapSort2(vector<int> &nums) {
int n = nums.size();
int arr[n];
for (int i = 0; i < n; i++) {
arr[i] = nums[i];
}
MaxHeap<int> maxHeap = MaxHeap<int>(arr, n);
// 从小到大排序,extractMax得到的是从大到小
vector<int> res = vector<int>(nums.size());
for (int i = nums.size() - 1; i >= 0; i--) {
res[i] = maxHeap.extractMax();
}
return res;
}
};