-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_mesh_weight_plusA_half.m
123 lines (109 loc) · 3.62 KB
/
compute_mesh_weight_plusA_half.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
function [W, A] = compute_mesh_weight_plusA_half(vertex,face,type,options)
% compute_mesh_weight - compute a weight matrix
%
% W = compute_mesh_weight(vertex,face,type,options);
%
% W is sparse weight matrix and W(i,j)=0 is vertex i and vertex j are not
% connected in the mesh.
%
% type is either
% 'combinatorial': W(i,j)=1 is vertex i is conntected to vertex j.
% 'distance': W(i,j) = 1/d_ij^2 where d_ij is distance between vertex
% i and j.
% 'conformal': W(i,j) = cot(alpha_ij)+cot(beta_ij) where alpha_ij and
% beta_ij are the adjacent angle to edge (i,j)
%
% If options.normalize=1, the the rows of W are normalize to sum to 1.
%
% Copyright (c) 2007 Gabriel Peyre
options.null = 0;
[vertex,face] = check_face_vertex(vertex,face);
nface = size(face,1);
n = max(max(face));
verb = getoptions(options, 'verb', n>5000);
if nargin<3
type = 'conformal';
end
switch lower(type)
case 'combinatorial'
W = triangulation2adjacency(face);
case 'distance'
W = my_euclidean_distance(triangulation2adjacency(face),vertex);
W(W>0) = 1./W(W>0);
W = (W+W')/2;
A = []; %add
case 'conformal'
% conformal laplacian
W = sparse(n,n);
A = sparse(n,n);
for i=1:3
i1 = mod(i-1,3)+1;
i2 = mod(i ,3)+1;
i3 = mod(i+1,3)+1;
pp = vertex(:,face(i2,:)) - vertex(:,face(i1,:));
qq = vertex(:,face(i3,:)) - vertex(:,face(i1,:));
% normalize the vectors
lpp = sqrt(sum(pp.^2,1)); lqq = sqrt(sum(qq.^2,1));
pp = pp ./ repmat( sqrt(sum(pp.^2,1)), [3 1] );
qq = qq ./ repmat( sqrt(sum(qq.^2,1)), [3 1] );
% compute angles
ang = acos(sum(pp.*qq,1));
area = (sin(ang)/6.0).*(lpp.*lqq);
W = W + sparse(face(i2,:),face(i3,:),0.5*cot(ang),n,n);
W = W + sparse(face(i3,:),face(i2,:),0.5*cot(ang),n,n);
A = A + sparse(face(i1,:),face(i1,:),area,n,n);
end
if 0
%% OLD CODE
W = sparse(n,n);
ring = compute_vertex_face_ring(face);
for i = 1:n
if verb
progressbar(i,n);
end
for b = ring{i}
% b is a face adjacent to a
bf = face(:,b);
% compute complementary vertices
if bf(1)==i
v = bf(2:3);
elseif bf(2)==i
v = bf([1 3]);
elseif bf(3)==i
v = bf(1:2);
else
error('Problem in face ring.');
end
j = v(1); k = v(2);
vi = vertex(:,i);
vj = vertex(:,j);
vk = vertex(:,k);
% angles
alpha = myangle(vk-vi,vk-vj);
beta = myangle(vj-vi,vj-vk);
% add weight
W(i,j) = W(i,j) + cot( alpha );
W(i,k) = W(i,k) + cot( beta );
end
end
end
otherwise
error('Unknown type.')
end
if isfield(options, 'normalize') && options.normalize==1
W = diag(sum(W,2).^(-1)) * W;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function beta = myangle(u,v);
du = sqrt( sum(u.^2) );
dv = sqrt( sum(v.^2) );
du = max(du,eps); dv = max(dv,eps);
beta = acos( sum(u.*v) / (du*dv) );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function W = my_euclidean_distance(A,vertex)
if size(vertex,1)<size(vertex,2)
vertex = vertex';
end
[i,j,s] = find(sparse(A));
d = sum( (vertex(i,:) - vertex(j,:)).^2, 2);
W = sparse(i,j,d);