-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataLoader.py
201 lines (156 loc) · 6.13 KB
/
dataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
# @Author : youngx
# @Time : 9:40 2022-05-07
from torch.utils.data import Dataset
import torch.nn as nn
import torch
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import math
def RotateImage(image, angle):
"""
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
(in degrees). The returned image will be large enough to hold the entire
new image, with a black background
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
# Get the image size
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) / 2)
# Convert the OpenCV 3x2 rotation matrix to 3x3
rot_mat = np.vstack([cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]])
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
# Shorthand for below calcs
image_w2 = image_size[0] * 0.5
image_h2 = image_size[1] * 0.5
# Obtain the rotated coordinates of the image corners
rotated_coords = [
(np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
(np.array([image_w2, -image_h2]) * rot_mat_notranslate).A[0]
]
# Find the size of the new image
x_coords = [pt[0] for pt in rotated_coords]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in rotated_coords]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
# We require a translation matrix to keep the image centred
trans_mat = np.matrix(
[[1, 0, int(new_w * 0.5 - image_w2)],
[0, 1, int(new_h * 0.5 - image_h2)],
[0, 0, 1]]
)
# Compute the tranform for the combined rotation and translation
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
# Apply the transform
result = cv2.warpAffine(image, affine_mat, (new_w, new_h), flags=cv2.INTER_LINEAR)
return result
def largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (bb_w - 2 * x, bb_h - 2 * y)
def CenterCrop(image, width, height):
"""
Given a NumPy / OpenCV 2 image, crops it to the given width and height,
around it's centre point
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
image_size = (image.shape[1], image.shape[0])
image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))
if (width > image_size[0]):
width = image_size[0]
if (height > image_size[1]):
height = image_size[1]
x1 = int(image_center[0] - width * 0.5)
x2 = int(image_center[0] + width * 0.5)
y1 = int(image_center[1] - height * 0.5)
y2 = int(image_center[1] + height * 0.5)
return image[y1:y2, x1:x2]
class RotNetLoader(Dataset):
def __init__(self, dirName, imagesize, onehot=False):
super(RotNetLoader, self).__init__()
self.dirName = dirName
self.imageSize = imagesize
self.onehot = onehot
self.imageList = os.listdir(self.dirName)
self.imageList = [os.path.join(self.dirName, file) for file in self.imageList]
def __len__(self):
return len(self.imageList)
def imageRote(self, imgfile):
rotAngle = np.random.randint(360)
# rotAngle = 0
image = cv2.imread(imgfile)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
rotImg = RotateImage(image, rotAngle)
h, w = image.shape[:2]
rotImg = CenterCrop(rotImg, *largest_rotated_rect(w, h, rotAngle))
rotImg = cv2.resize(rotImg, (self.imageSize, self.imageSize))
# self.showImg(image, rotImg, rotAngle)
return rotImg, rotAngle
def showImg(self, img, rotimage, angle):
rotImg2 = RotateImage(rotimage, -angle)
plt.subplot(221)
plt.imshow(img)
plt.subplot(222)
plt.imshow(rotimage)
plt.title(angle)
plt.subplot(223)
plt.imshow(rotImg2)
plt.title(-angle)
plt.show()
def __getitem__(self, item):
imgFile = self.imageList[item]
rotImg, rotAngle = self.imageRote(imgFile)
rotImg = (rotImg / 255.0).transpose(2, 0, 1)
if self.onehot:
rotAngle = np.array(rotAngle)
else:
rotAngle = np.array(rotAngle / 360)
return rotImg, rotAngle
def collate_fn(batch):
IMAGE = []
LABEL = []
for item in batch:
img, label = item
IMAGE.append(img)
# LABEL.append(label.reshape(1, 1))
LABEL.append(label)
IMAGE = np.array(IMAGE)
# LABEL = np.concatenate(LABEL, 0)
LABEL = np.array(LABEL)
return torch.from_numpy(IMAGE), torch.from_numpy(LABEL)
if __name__ == '__main__':
loder = RotNetLoader(dirName=r"\part2", imagesize=512)
for _ in range(10):
batch = next(iter(loder))
img, angle = batch
print(img.shape, angle)