-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathavg_baseline.py
40 lines (31 loc) · 1.13 KB
/
avg_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from utils import *
import math
def evaluate_baselines():
train = get_rating_frame('dataset/ml-100k/u1.base')
test = get_rating_frame('dataset/ml-100k/u1.test')
user_avg = {}
movie_avg = {}
movie_search_dict, user_search_dict = crete_search_table(train)
for mid in movie_search_dict:
movie_avg[mid] = 0
for _, r in movie_search_dict[mid]:
movie_avg[mid] += r
movie_avg[mid] /= len(movie_search_dict[mid])
for uid in user_search_dict:
user_avg[uid] = 0
for _, r in user_search_dict[uid]:
user_avg[uid] += r
user_avg[uid] /= len(user_search_dict[uid])
error_sum_movie = 0
error_sum_user = 0
for i, row in test.iterrows():
uid = row['uid']
mid = row['mid']
r = row['rating']
if mid in movie_avg:
error_sum_movie += (movie_avg[mid] - r) ** 2
if uid in user_avg:
error_sum_user += (user_avg[uid] - r) ** 2
rmse_avg_movie = math.sqrt(error_sum_movie / test.shape[0])
rmse_avg_user = math.sqrt(error_sum_user / test.shape[0])
return rmse_avg_movie, rmse_avg_user