forked from L0SG/WaveFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmel2samp.py
279 lines (238 loc) · 11.5 KB
/
mel2samp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************\
import os
import random
import argparse
import json
import torch
import torch.utils.data
import sys
from scipy.io.wavfile import read
# We're using the audio processing from TacoTron2 to make sure it matches
sys.path.insert(0, 'tacotron2_custom')
from tacotron2_custom.layers import TacotronSTFT
MAX_WAV_VALUE = 32768.0
def files_to_list(filename):
"""
Takes a text file of filenames and makes a list of filenames
"""
with open(filename, encoding='utf-8') as f:
files = f.readlines()
files = [f.rstrip() for f in files]
return files
def load_wav_to_torch(full_path):
"""
Loads wavdata into torch array
"""
sampling_rate, data = read(full_path)
# https://github.com/pytorch/pytorch/issues/47160#issue-733792677
return torch.from_numpy(data.copy()).float(), sampling_rate
class Mel2Samp(torch.utils.data.Dataset):
"""
This is the main class that calculates the spectrogram and returns the
spectrogram, audio pair.
"""
def __init__(self, data_type, synth_mode, deterministic_mode, training_files, test_files, segment_length, filter_length,
hop_length, win_length, sampling_rate, mel_fmin, mel_fmax, rescale=False, use_dbmel=False):
self.data_type = data_type
self.synth_mode = synth_mode # get full waveform & mel instead of chunk
self.deterministic_mode = deterministic_mode # no random chunk. only get the first x samples. useful for eval loop
assert self.data_type in ["train", "test"], "unknown data_type"
if self.data_type == "train":
self.audio_files = files_to_list(training_files)
random.seed(1234)
random.shuffle(self.audio_files)
elif self.data_type == "test":
self.audio_files = files_to_list(test_files)
self.hop_length = hop_length
self.stft = TacotronSTFT(filter_length=filter_length,
hop_length=hop_length,
win_length=win_length,
sampling_rate=sampling_rate,
mel_fmin=mel_fmin, mel_fmax=mel_fmax)
self.segment_length = segment_length
self.sampling_rate = sampling_rate
self.rescale = rescale
if self.rescale:
print("INFO: audio rescaling is on. the audio is normalized to have range (-1, 1).")
self.use_dbmel = use_dbmel
if self.use_dbmel:
print("INFO: using db-scale normalized mel-spec with range (0, 1).")
def get_mel(self, audio):
audio_norm = audio / MAX_WAV_VALUE
if self.rescale:
audio_norm = audio_norm / audio_norm.abs().max() * 0.999
audio_norm = audio_norm.unsqueeze(0)
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
if self.use_dbmel:
melspec = self.stft.mel_spectrogram_dbver(audio_norm)
else:
melspec = self.stft.mel_spectrogram(audio_norm)
melspec = torch.squeeze(melspec, 0)
return melspec
def __getitem__(self, index):
# Read audio
filename = self.audio_files[index]
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
if not self.synth_mode:
# Take segment
if audio.size(0) >= self.segment_length:
if not self.deterministic_mode:
max_audio_start = audio.size(0) - self.segment_length
audio_start = random.randint(0, max_audio_start)
else:
audio_start = 0 # always get the first chunk
audio = audio[audio_start:audio_start+self.segment_length]
else:
audio = torch.nn.functional.pad(audio, (0, self.segment_length - audio.size(0)), 'constant').data
else:
# full audio segment but with multiples of hop length for full-clip eval loop
cut_len = audio.size(0) % self.hop_length
audio = audio[:-cut_len]
mel = self.get_mel(audio)
audio = audio / MAX_WAV_VALUE
if self.rescale:
audio = audio / audio.abs().max() * 0.999
if self.synth_mode: # also return waveform filename
return(mel, audio, filename)
else:
return (mel, audio)
def __len__(self):
return len(self.audio_files)
class Mel2SampSeqDst(torch.utils.data.Dataset):
"""
This is the main class that calculates the spectrogram and returns the
spectrogram, audio pair.
"""
def __init__(self, data_type, synth_mode, deterministic_mode, training_files, test_files, segment_length, filter_length,
hop_length, win_length, sampling_rate, mel_fmin, mel_fmax, p_seqdst):
self.data_type = data_type
self.synth_mode = synth_mode # get full waveform & mel instead of chunk
self.deterministic_mode = deterministic_mode # no random chunk. only get the first x samples. useful for eval loop
assert self.data_type in ["train", "test"], "unknown data_type"
if self.data_type == "train":
self.audio_files = files_to_list(training_files)
random.seed(1234)
random.shuffle(self.audio_files)
elif self.data_type == "test":
self.audio_files = files_to_list(test_files)
self.stft = TacotronSTFT(filter_length=filter_length,
hop_length=hop_length,
win_length=win_length,
sampling_rate=sampling_rate,
mel_fmin=mel_fmin, mel_fmax=mel_fmax)
self.segment_length = segment_length
self.sampling_rate = sampling_rate
from torch.distributions import Bernoulli
self.p_seqdst = p_seqdst
self.bernoulli = Bernoulli(self.p_seqdst)
def get_mel(self, audio):
audio_norm = audio / MAX_WAV_VALUE
audio_norm = audio_norm.unsqueeze(0)
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
melspec = self.stft.mel_spectrogram(audio_norm)
melspec = torch.squeeze(melspec, 0)
return melspec
def get_fake_audio(self, filename):
# replace filename with fake audio and load it
rng = random.randint(0, 9)
filename_fake = filename.replace('wavs', 'wavs-synth').replace('.wav', '-synth{}.wav'.format(rng))
audio_fake, sampling_rate = load_wav_to_torch(filename_fake)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
return audio_fake
def __getitem__(self, index):
# Read audio
filename = self.audio_files[index]
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
fake_mode = False
if not self.synth_mode:
# Take segment
if self.data_type == "train" and self.bernoulli.sample().item():
audio_fake = self.get_fake_audio(filename)
fake_mode = True
else:
audio_fake = audio.clone()
if audio.size(0) >= self.segment_length:
if not self.deterministic_mode:
max_audio_start = audio.size(0) - self.segment_length
audio_start = random.randint(0, max_audio_start)
else:
audio_start = 0 # always get the first chunk
audio = audio[audio_start:audio_start+self.segment_length]
audio_fake = audio_fake[audio_start:audio_start+self.segment_length]
else:
audio = torch.nn.functional.pad(audio, (0, self.segment_length - audio.size(0)), 'constant').data
audio_fake = torch.nn.functional.pad(audio_fake, (0, self.segment_length - audio_fake.size(0)), 'constant').data
audio_fake = audio_fake / MAX_WAV_VALUE
mel = self.get_mel(audio)
audio = audio / MAX_WAV_VALUE
if self.synth_mode: # also return waveform filename
return(mel, audio, filename)
else:
if fake_mode:
return (mel, audio_fake)
else:
return (mel, audio)
def __len__(self):
return len(self.audio_files)
# ===================================================================
# Takes directory of clean audio and makes directory of spectrograms
# Useful for making test sets
# ===================================================================
if __name__ == "__main__":
# Get defaults so it can work with no Sacred
parser = argparse.ArgumentParser()
parser.add_argument('-f', "--filelist_path", required=True)
parser.add_argument('-c', '--config', type=str,
help='JSON file for configuration')
parser.add_argument('-o', '--output_dir', type=str,
help='Output directory')
args = parser.parse_args()
with open(args.config) as f:
data = f.read()
data_config = json.loads(data)["data_config"]
mel2samp = Mel2Samp(**data_config)
filepaths = files_to_list(args.filelist_path)
# Make directory if it doesn't exist
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir)
os.chmod(args.output_dir, 0o775)
for filepath in filepaths:
audio, sr = load_wav_to_torch(filepath)
melspectrogram = mel2samp.get_mel(audio)
filename = os.path.basename(filepath)
new_filepath = args.output_dir + '/' + filename + '.pt'
print(new_filepath)
torch.save(melspectrogram, new_filepath)