-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
355 lines (271 loc) · 16.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import random, os, sys
import numpy as np
import time, statistics
import logging, warnings
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.functional import binary_cross_entropy_with_logits as bce_loss
from torch.optim.lr_scheduler import StepLR
from tqdm import tqdm
from sklearn import metrics
from torchmetrics import AveragePrecision
import models, data, utils
import pdb
from dgl import DGLGraph
warnings.simplefilter("ignore")
# for Reproducibility
def set_random_seeds(random_seed=0):
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def evaluate(model, g, n_feat, he_feat, dataloader, iters, method):
model.eval()
test_preds, test_labels = [], []
with torch.no_grad():
for _ in range(iters):
# 1. HNHN message passing
dummy_mask = utils.gen_feature_mask(0)
nfeat, efeat = model(g, dummy_mask, n_feat, he_feat)
# 2. candidate scoring for hyperedge in validation/test datasets
hedges, labels = dataloader.next()
test_preds += model.aggregate(nfeat, hedges, mode='Eval', method=method)
test_labels.append(labels.detach())
test_preds = torch.sigmoid(torch.stack(test_preds).squeeze())
test_labels = torch.cat(test_labels, dim=0)
return test_preds.tolist(), test_labels.tolist()
def train(args, data_info, node_aggr_info, device):
best_accuracy = [0.0 for _ in range(args.num_split)]
best_epoch = [0 for _ in range(args.num_split)]
for split in range(args.num_split): # number of splits (default: 5)
data_dict = torch.load(f'./data/splits/{args.dataset}split{split}.pt')
ground = data_dict["ground_train"] + data_dict["ground_valid"] # ground_train + train_only?
g = utils.gen_DGLGraph_with_droprate(ground, 0, method=args.augment_method).to(device)
# get dataloaders for training and validation datasets
train_pos_loader, train_neg_loader = data.get_dataloaders(data_dict, args.batch_size, device, args.ns_method, label='Train')
valid_pos_loader, valid_neg_sns_loader, valid_neg_mns_loader, valid_neg_cns_loader = data.get_dataloaders(data_dict, args.batch_size, device, None, label='Valid')
train_iters, val_pos_iters, val_neg_iters = utils.get_num_iters(data_dict, args.batch_size, label='Train')
# Initialize models
# 1. Hypergraph encoder (shared in the two augmented views)
n_feat, he_feat = data_info['node_feat'][g.nodes('node')], data_info['hyperedge_feat'][g.nodes('hedge')]
n_norm, he_norm = data_info['node_normalized'][g.nodes('node')], data_info['edge_normalized'][g.nodes('hedge')]
n_norm_sum, he_norm_sum = data_info['node_normalized_sum'][g.nodes('node')], data_info['edge_normalized_sum'][g.nodes('hedge')]
encoder = models.HypergraphEncoder(args.h_dim, data_info['input_dim'], args.dropout, n_norm, n_norm_sum, he_norm, he_norm_sum)
model = models.OurModel(encoder, args.proj_dim, node_aggr_info).to(device)
# 2. Classifier for candidate scoring
model_params = list(model.parameters())
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=10) # learning rate scheduling
average_precision = AveragePrecision()
# Training phase
# 1. Hypergraph encoder (HGNN model) + Projection
# 2. Candidate scoring (positive + negative)
# 3. Loss computation and backpropagation
print(f'============================================ Split {split} ==================================================')
print('#Epoch \t Train Loss \t ROC SNS | MNS | CNS | Mixed | Average \t AP SNS | MNS | CNS | Mixed | Average')
patience_epoch = 0
for epoch in range(args.num_epochs):
model.train()
total_loss = 0.0
train_pred, train_label = [], []
epoch_time = 0.0
average_time = 0.0
epoch_start_time = time.time()
for _ in range(int(train_iters*args.train_ratio)):
# generating two augmented views for contrastive learning
g1 = utils.gen_DGLGraph_with_droprate(ground, args.drop_incidence_rate, method=args.augment_method).to(device)
g2 = utils.gen_DGLGraph_with_droprate(ground, args.drop_incidence_rate, method=args.augment_method).to(device)
n_mask1 = utils.gen_feature_mask(args.drop_feature_rate)
n_mask2 = utils.gen_feature_mask(args.drop_feature_rate)
n_mask0 = utils.gen_feature_mask(0.0)
# 1. Hypergraph Encoder
n, he = model(g, n_mask0, n_feat, he_feat)
n1, he1 = model(g1, n_mask1, n_feat, he_feat)
n2, he2 = model(g2, n_mask2, n_feat, he_feat)
# 1-2. Projection
np1, np2 = model.node_projection(n1), model.node_projection(n2)
hep1, hep2 = model.hedge_projection(he1), model.hedge_projection(he2)
# 2. candidate scoring for both positive and negative hyperedges
pos_hedges, pos_labels = train_pos_loader.next()
neg_hedges, neg_labels = train_neg_loader.next()
pos_preds = model.aggregate(n, pos_hedges, mode='Train', method=args.aggre_method)
neg_preds = model.aggregate(n, neg_hedges, mode='Train', method=args.aggre_method)
# 3. compute training loss and update parameters
d_real_loss = bce_loss(pos_preds, pos_labels)
d_fake_loss = bce_loss(neg_preds, neg_labels)
pred_loss = d_real_loss + d_fake_loss
contrast_loss = -(torch.log(model.cosine_similarity(np1, np2)) + torch.log(model.cosine_similarity(hep1, hep2)))
# unified loss
if args.use_contrastive == 1:
train_loss = pred_loss + (contrast_loss*args.contrast_ratio)
else:
train_loss = pred_loss
train_loss.backward()
nn.utils.clip_grad_norm_(model_params, args.clip)
optimizer.step()
total_loss += train_loss.item()
epoch_loss = total_loss / (train_iters*args.train_ratio)
scheduler.step(epoch_loss)
if args.train_only == 1: # for scalability evaluation
epoch_time = time.time() - epoch_start_time
print ('Training time per epoch: {:.4f}'.format(epoch_time))
average_time += epoch_time
if epoch == 20: # run 20 epochs and
print ('Average Training time per epoch: {:.4f}'.format(average_time/20))
average_time = 0.0
break
continue
# Evaluation phase
# 1. postiive dataset + four negative datasets (SNS, MNS, CNS, and Mixed)
val_pred_pos, val_label_pos = evaluate(model, g, n_feat, he_feat, valid_pos_loader, val_pos_iters, args.aggre_method)
val_pred_sns, val_label_sns = evaluate(model, g, n_feat, he_feat, valid_neg_sns_loader, val_neg_iters, args.aggre_method)
val_pred_mns, val_label_mns = evaluate(model, g, n_feat, he_feat, valid_neg_mns_loader, val_neg_iters, args.aggre_method)
val_pred_cns, val_label_cns = evaluate(model, g, n_feat, he_feat, valid_neg_cns_loader, val_neg_iters, args.aggre_method)
# SNS validation set
roc_sns = metrics.roc_auc_score(np.array(val_label_pos+val_label_sns), np.array(val_pred_pos+val_pred_sns))
ap_sns = average_precision(torch.tensor(val_pred_pos+val_pred_sns), torch.tensor(val_label_pos+val_label_sns))
# MNS validation set
roc_mns = metrics.roc_auc_score(np.array(val_label_pos+val_label_mns), np.array(val_pred_pos+val_pred_mns))
ap_mns = average_precision(torch.tensor(val_pred_pos+val_pred_mns), torch.tensor(val_label_pos+val_label_mns))
# CNS validation set
roc_cns = metrics.roc_auc_score(np.array(val_label_pos+val_label_cns), np.array(val_pred_pos+val_pred_cns))
ap_cns = average_precision(torch.tensor(val_pred_pos+val_pred_cns), torch.tensor(val_label_pos+val_label_cns))
# Mixed validation set
d = len(val_pred_pos) // 3
val_label_mixed = val_label_pos + val_label_sns[0:d]+val_label_mns[0:d]+val_label_cns[0:d]
val_pred_mixed = val_pred_pos + val_pred_sns[0:d]+val_pred_mns[0:d]+val_pred_cns[0:d]
roc_mixed = metrics.roc_auc_score(np.array(val_label_mixed), np.array(val_pred_mixed))
ap_mixed = average_precision(torch.tensor(val_pred_mixed), torch.tensor(val_label_mixed))
roc_average = (roc_sns+roc_mns+roc_cns+roc_mixed)/4
ap_average = (ap_sns+ap_mns+ap_cns+ap_mixed)/4
print(f' {epoch}: \t {epoch_loss:.4f} \t {roc_sns:.4f} {roc_mns:.4f} {roc_cns:.4f} {roc_mixed:.4f} {roc_average:.4f} \t {ap_sns:.4f} {ap_mns:.4f} {ap_cns:.4f} {ap_mixed:.4f} {ap_average:.4f}')
if roc_average > best_accuracy[split]:
best_accuracy[split] = roc_average
best_epoch[split] = epoch
patience_epoch = 0
# save model here
torch.save(model.state_dict(), f"{args.model_dir}/model_gpu{args.gpu_index}_{split}.pkt")
else:
patience_epoch += 1
if patience_epoch >= 20:
print('=== Early Stopping')
break
print(' ')
print(f'=====\t Split: {split} \t Best Accuracy: {best_accuracy[split]:.4f} \t Best Epoch: {best_epoch[split]} \t=====')
print(' ')
def test(args, data_info, node_aggr_info, device):
sns_avg_roc = []
sns_avg_ap = []
mns_avg_roc = []
mns_avg_ap = []
cns_avg_roc = []
cns_avg_ap = []
mixed_avg_roc = []
mixed_avg_ap = []
average_avg_roc = []
average_avg_ap = []
print(' ')
print('=========================================== Test Start ================================================')
print('#Split \t ROC SNS | MNS | CNS | Mixed | Average \t AP SNS | MNS | CNS | Mixed | Average')
for split in range(args.num_split): # number of splits (default: 5)
data_dict = torch.load(f'./data/splits/{args.dataset}split{split}.pt')
ground = data_dict["ground_train"] + data_dict["ground_valid"]
g = utils.gen_DGLGraph_with_droprate(ground, 0).to(device)
# get dataloaders for training and validation datasets
test_pos_loader, test_neg_sns_loader, test_neg_mns_loader, test_neg_cns_loader = data.get_dataloaders(data_dict, args.batch_size, device, None, label='Test')
test_pos_iters, test_neg_iters = utils.get_num_iters(data_dict, args.batch_size, label='Test')
# Initialize models
# 1. Node embedding model
n_feat, he_feat = data_info['node_feat'][g.nodes('node')], data_info['hyperedge_feat'][g.nodes('hedge')]
n_norm, he_norm = data_info['node_normalized'][g.nodes('node')], data_info['edge_normalized'][g.nodes('hedge')]
n_norm_sum, he_norm_sum = data_info['node_normalized_sum'][g.nodes('node')], data_info['edge_normalized_sum'][g.nodes('hedge')]
encoder = models.HypergraphEncoder(args.h_dim, data_info['input_dim'], args.dropout, n_norm, n_norm_sum, he_norm, he_norm_sum)
model = models.OurModel(encoder, args.proj_dim, node_aggr_info).to(device)
model.load_state_dict(torch.load(f"{args.model_dir}/model_gpu{args.gpu_index}_{split}.pkt"))
average_precision = AveragePrecision()
# Test phase
# 1. postiive dataset + four negative datasets (SNS, MNS, CNS, and Mixed)
test_pred_pos, test_label_pos = evaluate(model, g, n_feat, he_feat, test_pos_loader, test_pos_iters, args.aggre_method)
test_pred_sns, test_label_sns = evaluate(model, g, n_feat, he_feat, test_neg_sns_loader, test_neg_iters, args.aggre_method)
test_pred_mns, test_label_mns = evaluate(model, g, n_feat, he_feat, test_neg_mns_loader, test_neg_iters, args.aggre_method)
test_pred_cns, test_label_cns = evaluate(model, g, n_feat, he_feat, test_neg_cns_loader, test_neg_iters, args.aggre_method)
# SNS
roc_sns = metrics.roc_auc_score(np.array(test_label_pos+test_label_sns), np.array(test_pred_pos+test_pred_sns))
ap_sns = average_precision(torch.tensor(test_pred_pos+test_pred_sns), torch.tensor(test_label_pos+test_label_sns)).numpy()
sns_avg_roc.append(roc_sns)
sns_avg_ap.append(ap_sns)
# MNS
roc_mns = metrics.roc_auc_score(np.array(test_label_pos+test_label_mns), np.array(test_pred_pos+test_pred_mns))
ap_mns = average_precision(torch.tensor(test_pred_pos+test_pred_mns), torch.tensor(test_label_pos+test_label_mns)).numpy()
mns_avg_roc.append(roc_mns)
mns_avg_ap.append(ap_mns)
# CNS
roc_cns = metrics.roc_auc_score(np.array(test_label_pos+test_label_cns), np.array(test_pred_pos+test_pred_cns))
ap_cns = average_precision(torch.tensor(test_pred_pos+test_pred_cns), torch.tensor(test_label_pos+test_label_cns)).numpy()
cns_avg_roc.append(roc_cns)
cns_avg_ap.append(ap_cns)
# Mixed
d = len(test_pred_pos) // 3
test_label_mixed = test_label_pos + test_label_sns[0:d]+test_label_mns[0:d]+test_label_cns[0:d]
test_pred_mixed = test_pred_pos + test_pred_sns[0:d]+test_pred_mns[0:d]+test_pred_cns[0:d]
roc_mixed = metrics.roc_auc_score(np.array(test_label_mixed), np.array(test_pred_mixed))
ap_mixed = average_precision(torch.tensor(test_pred_mixed), torch.tensor(test_label_mixed)).numpy()
mixed_avg_roc.append(roc_mixed)
mixed_avg_ap.append(ap_mixed)
roc_average = (roc_sns+roc_mns+roc_cns+roc_mixed)/4
ap_average = (ap_sns+ap_mns+ap_cns+ap_mixed)/4
average_avg_roc.append(roc_average)
average_avg_ap.append(ap_average)
print(f'{split} \t {roc_sns:.4f} {roc_mns:.4f} {roc_cns:.4f} {roc_mixed:.4f} {roc_average:.4f} \t {ap_sns:.4f} {ap_mns:.4f} {ap_cns:.4f} {ap_mixed:.4f} {ap_average:.4f}')
final_sns_roc = sum(sns_avg_roc)/len(sns_avg_roc)
final_mns_roc = sum(mns_avg_roc)/len(mns_avg_roc)
final_cns_roc = sum(cns_avg_roc)/len(cns_avg_roc)
final_mixed_roc = sum(mixed_avg_roc)/len(mixed_avg_roc)
final_average_roc = sum(average_avg_roc)/len(average_avg_roc)
final_sns_ap = sum(sns_avg_ap)/len(sns_avg_ap)
final_mns_ap = sum(mns_avg_ap)/len(mns_avg_ap)
final_cns_ap = sum(cns_avg_ap)/len(cns_avg_ap)
final_mixed_ap = sum(mixed_avg_ap)/len(mixed_avg_ap)
final_average_ap = sum(average_avg_ap)/len(average_avg_ap)
if args.num_split > 1:
std_sns_roc = statistics.stdev(sns_avg_roc)
std_mns_roc = statistics.stdev(mns_avg_roc)
std_cns_roc = statistics.stdev(cns_avg_roc)
std_mixed_roc = statistics.stdev(mixed_avg_roc)
std_average_roc = statistics.stdev(average_avg_roc)
std_sns_ap = np.std(sns_avg_ap)
std_mns_ap = np.std(mns_avg_ap)
std_cns_ap = np.std(cns_avg_ap)
std_mixed_ap = np.std(mixed_avg_ap)
std_average_ap = np.std(average_avg_ap)
else:
std_sns_roc = 0.0
std_mns_roc = 0.0
std_cns_roc = 0.0
std_mixed_roc = 0.0
std_average_roc = 0.0
std_sns_ap = 0.0
std_mns_ap = 0.0
std_cns_ap = 0.0
std_mixed_ap = 0.0
std_average_ap = 0.0
print('============================================ Test End =================================================')
print(' ')
print('AUROC \t\t\t\t\t AP')
print('SNS\tMNS\tCNS\tMixed\tAverage\tSNS\tMNS\tCNS\tMixed\tAverage')
print(f'{final_sns_roc:.4f}\t{final_mns_roc:.4f}\t{final_cns_roc:.4f}\t{final_mixed_roc:.4f}\t{final_average_roc:.4f}\t{final_sns_ap:.4f}\t{final_mns_ap:.4f}\t{final_cns_ap:.4f}\t{final_mixed_ap:.4f}\t{final_average_ap:.4f}')
print(f'{std_sns_roc:.4f}\t{std_mns_roc:.4f}\t{std_cns_roc:.4f}\t{std_mixed_roc:.4f}\t{std_average_roc:.4f}\t{std_sns_ap:.4f}\t{std_mns_ap:.4f}\t{std_cns_ap:.4f}\t{std_mixed_ap:.4f}\t{std_average_ap:.4f}')
if __name__ == '__main__':
args = utils.parse_args()
utils.print_summary(args)
set_random_seeds(args.seed)
device = torch.device("cuda:{}".format(args.gpu_index))
data_info = data.get_datainfo(args, device)
node_aggr_info = {'nhead': args.num_heads, 'nlayer': args.num_layers, 'h_dim': args.h_dim, 'dropout': args.dropout}
train(args, data_info, node_aggr_info, device)
if args.train_only == 0:
test(args, data_info, node_aggr_info, device)