-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg.h
501 lines (459 loc) · 45.7 KB
/
linalg.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// linalg.h - v2.0 - Single-header public domain linear algebra library
//
// The intent of this library is to provide the bulk of the functionality
// you need to write programs that frequently use small, fixed-size vectors
// and matrices, in domains such as computational geometry or computer
// graphics. It strives for terse, readable source code.
//
// The original author of this software is Sterling Orsten, and its permanent
// home is <http://github.com/sgorsten/linalg/>. If you find this software
// useful, an acknowledgement in your source text and/or product documentation
// is appreciated, but not required.
//
// The author acknowledges significant insights and contributions by:
// Stan Melax <http://github.com/melax/>
// Dimitri Diakopoulos <http://github.com/ddiakopoulos/>
// This is free and unencumbered software released into the public domain.
//
// Anyone is free to copy, modify, publish, use, compile, sell, or
// distribute this software, either in source code form or as a compiled
// binary, for any purpose, commercial or non-commercial, and by any
// means.
//
// In jurisdictions that recognize copyright laws, the author or authors
// of this software dedicate any and all copyright interest in the
// software to the public domain. We make this dedication for the benefit
// of the public at large and to the detriment of our heirs and
// successors. We intend this dedication to be an overt act of
// relinquishment in perpetuity of all present and future rights to this
// software under copyright law.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// For more information, please refer to <http://unlicense.org/>
#pragma once
#ifndef LINALG_H
#define LINALG_H
#include <cmath> // For various unary math functions, such as std::sqrt
#include <cstdlib> // To resolve std::abs ambiguity on clang
#include <cstdint> // For implementing namespace linalg::aliases
#include <array> // For std::array, used in the relational operator overloads
#include <limits> // For std::numeric_limits/epsilon
// Visual Studio versions prior to 2015 lack constexpr support
#if defined(_MSC_VER) && _MSC_VER < 1900 && !defined(constexpr)
#define constexpr
#endif
namespace linalg
{
// Small, fixed-length vector type, consisting of exactly M elements of type T, and presumed to be a column-vector unless otherwise noted
template<class T, int M> struct vec;
template<class T> struct vec<T,2>
{
T x,y;
constexpr vec() : x(), y() {}
constexpr vec(const T & x_, const T & y_) : x(x_), y(y_) {}
constexpr vec(const std::array<T,2> & a) : x(a[0]), y(a[1]) {}
constexpr explicit vec(const T & s) : vec(s, s) {}
constexpr explicit vec(const T * p) : vec(p[0], p[1]) {}
template<class U>
constexpr explicit vec(const vec<U,2> & v) : vec(static_cast<T>(v.x), static_cast<T>(v.y)) {}
constexpr const T & operator[] (int i) const { return (&x)[i]; }
T & operator[] (int i) { return (&x)[i]; }
};
template<class T> struct vec<T,3>
{
T x,y,z;
constexpr vec() : x(), y(), z() {}
constexpr vec(const T & x_, const T & y_,
const T & z_) : x(x_), y(y_), z(z_) {}
constexpr vec(const vec<T,2> & xy,
const T & z_) : vec(xy.x, xy.y, z_) {}
constexpr vec(const std::array<T,3> & a) : x(a[0]), y(a[1]), z(a[2]) {}
constexpr explicit vec(const T & s) : vec(s, s, s) {}
constexpr explicit vec(const T * p) : vec(p[0], p[1], p[2]) {}
template<class U>
constexpr explicit vec(const vec<U,3> & v) : vec(static_cast<T>(v.x), static_cast<T>(v.y), static_cast<T>(v.z)) {}
constexpr const T & operator[] (int i) const { return (&x)[i]; }
T & operator[] (int i) { return (&x)[i]; }
constexpr const vec<T,2> & xy() const { return *reinterpret_cast<const vec<T,2> *>(this); }
vec<T,2> & xy() { return *reinterpret_cast<vec<T,2> *>(this); }
};
template<class T> struct vec<T,4>
{
T x,y,z,w;
constexpr vec() : x(), y(), z(), w() {}
constexpr vec(const T & x_, const T & y_,
const T & z_, const T & w_) : x(x_), y(y_), z(z_), w(w_) {}
constexpr vec(const vec<T,2> & xy,
const T & z_, const T & w_) : vec(xy.x, xy.y, z_, w_) {}
constexpr vec(const vec<T,3> & xyz,
const T & w_) : vec(xyz.x, xyz.y, xyz.z, w_) {}
constexpr vec(const std::array<T,4> & a) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {}
constexpr explicit vec(const T & s) : vec(s, s, s, s) {}
constexpr explicit vec(const T * p) : vec(p[0], p[1], p[2], p[3]) {}
template<class U>
constexpr explicit vec(const vec<U,4> & v) : vec(static_cast<T>(v.x), static_cast<T>(v.y), static_cast<T>(v.z), static_cast<T>(v.w)) {}
constexpr const T & operator[] (int i) const { return (&x)[i]; }
T & operator[] (int i) { return (&x)[i]; }
constexpr const vec<T,2> & xy() const { return *reinterpret_cast<const vec<T,2> *>(this); }
constexpr const vec<T,3> & xyz() const { return *reinterpret_cast<const vec<T,3> *>(this); }
vec<T,2> & xy() { return *reinterpret_cast<vec<T,2> *>(this); }
vec<T,3> & xyz() { return *reinterpret_cast<vec<T,3> *>(this); }
};
// Small, fixed-size matrix type, consisting of exactly M rows and N columns of type T, stored in column-major order.
template<class T, int M, int N> struct mat;
template<class T, int M> struct mat<T,M,2>
{
typedef vec<T,M> V;
V x,y;
constexpr mat() : x(), y() {}
constexpr mat(const V & x_, const V & y_) : x(x_), y(y_) {}
constexpr explicit mat(const T & s) : x(s), y(s) {}
constexpr explicit mat(const T * p) : x(p+M*0), y(p+M*1) {}
template<class U>
constexpr explicit mat(const mat<U,M,2> & m) : mat(V(m.x), V(m.y)) {}
constexpr vec<T,2> row(int i) const { return {x[i], y[i]}; }
constexpr const V & operator[] (int j) const { return (&x)[j]; }
V & operator[] (int j) { return (&x)[j]; }
};
template<class T, int M> struct mat<T,M,3>
{
typedef vec<T,M> V;
V x,y,z;
constexpr mat() : x(), y(), z() {}
constexpr mat(const V & x_, const V & y_,
const V & z_) : x(x_), y(y_), z(z_) {}
constexpr explicit mat(const T & s) : x(s), y(s), z(s) {}
constexpr explicit mat(const T * p) : x(p+M*0), y(p+M*1), z(p+M*2) {}
template<class U>
constexpr explicit mat(const mat<U,M,3> & m) : mat(V(m.x), V(m.y), V(m.z)) {}
constexpr vec<T,3> row(int i) const { return {x[i], y[i], z[i]}; }
constexpr const V & operator[] (int j) const { return (&x)[j]; }
V & operator[] (int j) { return (&x)[j]; }
};
template<class T, int M> struct mat<T,M,4>
{
typedef vec<T,M> V;
V x,y,z,w;
constexpr mat() : x(), y(), z(), w() {}
constexpr mat(const V & x_, const V & y_,
const V & z_, const V & w_) : x(x_), y(y_), z(z_), w(w_) {}
constexpr explicit mat(const T & s) : x(s), y(s), z(s), w(s) {}
constexpr explicit mat(const T * p) : x(p+M*0), y(p+M*1), z(p+M*2), w(p+M*3) {}
template<class U>
constexpr explicit mat(const mat<U,M,4> & m) : mat(V(m.x), V(m.y), V(m.z), V(m.w)) {}
constexpr vec<T,4> row(int i) const { return {x[i], y[i], z[i], w[i]}; }
constexpr const V & operator[] (int j) const { return (&x)[j]; }
V & operator[] (int j) { return (&x)[j]; }
};
// Type traits for a binary operation involving linear algebra types, used for SFINAE on templated functions and operator overloads
template<class A, class B> struct traits {};
template<class T, int M > struct traits<vec<T,M >, vec<T,M >> { typedef T scalar; typedef vec<T,M > result; typedef vec<bool,M > bool_result; typedef vec<decltype(+T()),M > arith_result; typedef std::array<T,M> compare_as; };
template<class T, int M > struct traits<vec<T,M >, T > { typedef T scalar; typedef vec<T,M > result; typedef vec<bool,M > bool_result; typedef vec<decltype(+T()),M > arith_result; };
template<class T, int M > struct traits<T, vec<T,M >> { typedef T scalar; typedef vec<T,M > result; typedef vec<bool,M > bool_result; typedef vec<decltype(+T()),M > arith_result; };
template<class T, int M, int N> struct traits<mat<T,M,N>, mat<T,M,N>> { typedef T scalar; typedef mat<T,M,N> result; typedef mat<bool,M,N> bool_result; typedef mat<decltype(+T()),M,N> arith_result; typedef std::array<T,M*N> compare_as; };
template<class T, int M, int N> struct traits<mat<T,M,N>, T > { typedef T scalar; typedef mat<T,M,N> result; typedef mat<bool,M,N> bool_result; typedef mat<decltype(+T()),M,N> arith_result; };
template<class T, int M, int N> struct traits<T, mat<T,M,N>> { typedef T scalar; typedef mat<T,M,N> result; typedef mat<bool,M,N> bool_result; typedef mat<decltype(+T()),M,N> arith_result; };
template<class A, class B=A> using scalar_t = typename traits<A,B>::scalar; // Underlying scalar type when performing elementwise operations
template<class A, class B=A> using result_t = typename traits<A,B>::result; // Result of calling a function on linear algebra types
template<class A, class B=A> using bool_result_t = typename traits<A,B>::bool_result; // Result of a comparison or unary not operation on linear algebra types
template<class A, class B=A> using arith_result_t = typename traits<A,B>::arith_result; // Result of an arithmetic operation on linear algebra types (accounts for integer promotion)
// Produce a scalar by applying f(T,T) -> T to adjacent pairs of elements from vector/matrix a in left-to-right order (matching the associativity of arithmetic and logical operators)
template<class T, class F> constexpr T fold(const vec<T,2> & a, F f) { return f(a.x,a.y); }
template<class T, class F> constexpr T fold(const vec<T,3> & a, F f) { return f(f(a.x,a.y),a.z); }
template<class T, class F> constexpr T fold(const vec<T,4> & a, F f) { return f(f(f(a.x,a.y),a.z),a.w); }
template<class T, int M, class F> constexpr T fold(const mat<T,M,2> & a, F f) { return f(fold(a.x,f),fold(a.y,f)); }
template<class T, int M, class F> constexpr T fold(const mat<T,M,3> & a, F f) { return f(f(fold(a.x,f),fold(a.y,f)),fold(a.z,f)); }
template<class T, int M, class F> constexpr T fold(const mat<T,M,4> & a, F f) { return f(f(f(fold(a.x,f),fold(a.y,f)),fold(a.z,f)),fold(a.w,f)); }
// Produce a vector/matrix by applying f(T,T) to corresponding pairs of elements from vectors/matrix a and b
template<class T, class F> constexpr auto zip(const vec<T,2 > & a, const vec<T,2 > & b, F f) -> vec<decltype(f(T(),T())),2 > { return {f(a.x,b.x), f(a.y,b.y)}; }
template<class T, class F> constexpr auto zip(const vec<T,3 > & a, const vec<T,3 > & b, F f) -> vec<decltype(f(T(),T())),3 > { return {f(a.x,b.x), f(a.y,b.y), f(a.z,b.z)}; }
template<class T, class F> constexpr auto zip(const vec<T,4 > & a, const vec<T,4 > & b, F f) -> vec<decltype(f(T(),T())),4 > { return {f(a.x,b.x), f(a.y,b.y), f(a.z,b.z), f(a.w,b.w)}; }
template<class T, int M, class F> constexpr auto zip(const vec<T,M > & a, T b, F f) -> vec<decltype(f(T(),T())),M > { return zip(a, vec<T,M>(b), f); }
template<class T, int M, class F> constexpr auto zip( T a, const vec<T,M > & b, F f) -> vec<decltype(f(T(),T())),M > { return zip(vec<T,M>(a), b, f); }
template<class T, int M, class F> constexpr auto zip(const mat<T,M,2> & a, const mat<T,M,2> & b, F f) -> mat<decltype(f(T(),T())),M,2> { return {zip(a.x,b.x,f), zip(a.y,b.y,f)}; }
template<class T, int M, class F> constexpr auto zip(const mat<T,M,3> & a, const mat<T,M,3> & b, F f) -> mat<decltype(f(T(),T())),M,3> { return {zip(a.x,b.x,f), zip(a.y,b.y,f), zip(a.z,b.z,f)}; }
template<class T, int M, class F> constexpr auto zip(const mat<T,M,4> & a, const mat<T,M,4> & b, F f) -> mat<decltype(f(T(),T())),M,4> { return {zip(a.x,b.x,f), zip(a.y,b.y,f), zip(a.z,b.z,f), zip(a.w,b.w,f)}; }
template<class T, int M, int N, class F> constexpr auto zip(const mat<T,M,N> & a, T b, F f) -> mat<decltype(f(T(),T())),M,N> { return zip(a, mat<T,M,N>(b), f); }
template<class T, int M, int N, class F> constexpr auto zip( T a, const mat<T,M,N> & b, F f) -> mat<decltype(f(T(),T())),M,N> { return zip(mat<T,M,N>(a), b, f); }
// Produce a vector/matrix by applying f(T) to elements from vector/matrix a
template<class T, int M, class F> constexpr auto map(const vec<T,M > & a, F f) -> vec<decltype(f(T())),M > { return zip(a, a, [f](T l, T) { return f(l); }); }
template<class T, int M, int N, class F> constexpr auto map(const mat<T,M,N> & a, F f) -> mat<decltype(f(T())),M,N> { return zip(a, a, [f](T l, T) { return f(l); }); }
// Relational operators are defined to compare the elements of two vectors or matrices lexicographically, in column-major order
template<class A, class C=typename traits<A,A>::compare_as> constexpr bool operator == (const A & a, const A & b) { return reinterpret_cast<const C &>(a) == reinterpret_cast<const C &>(b); }
template<class A, class C=typename traits<A,A>::compare_as> constexpr bool operator != (const A & a, const A & b) { return reinterpret_cast<const C &>(a) != reinterpret_cast<const C &>(b); }
template<class A, class C=typename traits<A,A>::compare_as> constexpr bool operator < (const A & a, const A & b) { return reinterpret_cast<const C &>(a) < reinterpret_cast<const C &>(b); }
template<class A, class C=typename traits<A,A>::compare_as> constexpr bool operator > (const A & a, const A & b) { return reinterpret_cast<const C &>(a) > reinterpret_cast<const C &>(b); }
template<class A, class C=typename traits<A,A>::compare_as> constexpr bool operator <= (const A & a, const A & b) { return reinterpret_cast<const C &>(a) <= reinterpret_cast<const C &>(b); }
template<class A, class C=typename traits<A,A>::compare_as> constexpr bool operator >= (const A & a, const A & b) { return reinterpret_cast<const C &>(a) >= reinterpret_cast<const C &>(b); }
// Lambdas are not permitted inside constexpr functions, so we provide explicit function objects instead
namespace op
{
template<class T> struct pos { constexpr auto operator() (T r) const -> decltype(+r) { return +r; } };
template<class T> struct neg { constexpr auto operator() (T r) const -> decltype(-r) { return -r; } };
template<class T> struct add { constexpr auto operator() (T l, T r) const -> decltype(l + r) { return l + r; } };
template<class T> struct sub { constexpr auto operator() (T l, T r) const -> decltype(l - r) { return l - r; } };
template<class T> struct mul { constexpr auto operator() (T l, T r) const -> decltype(l * r) { return l * r; } };
template<class T> struct div { constexpr auto operator() (T l, T r) const -> decltype(l / r) { return l / r; } };
template<class T> struct mod { constexpr auto operator() (T l, T r) const -> decltype(l % r) { return l % r; } };
template<class T> struct lshift { constexpr auto operator() (T l, T r) const -> decltype(l << r) { return l << r; } };
template<class T> struct rshift { constexpr auto operator() (T l, T r) const -> decltype(l >> r) { return l >> r; } };
template<class T> struct binary_not { constexpr auto operator() (T r) const -> decltype(+r) { return ~r; } };
template<class T> struct binary_or { constexpr auto operator() (T l, T r) const -> decltype(l | r) { return l | r; } };
template<class T> struct binary_xor { constexpr auto operator() (T l, T r) const -> decltype(l ^ r) { return l ^ r; } };
template<class T> struct binary_and { constexpr auto operator() (T l, T r) const -> decltype(l & r) { return l & r; } };
template<class T> struct logical_not { constexpr bool operator() (T r) const { return !r; } };
template<class T> struct logical_or { constexpr bool operator() (T l, T r) const { return l || r; } };
template<class T> struct logical_and { constexpr bool operator() (T l, T r) const { return l && r; } };
template<class T> struct equal { constexpr bool operator() (T l, T r) const { return l == r; } };
template<class T> struct nequal { constexpr bool operator() (T l, T r) const { return l != r; } };
template<class T> struct less { constexpr bool operator() (T l, T r) const { return l < r; } };
template<class T> struct greater { constexpr bool operator() (T l, T r) const { return l > r; } };
template<class T> struct lequal { constexpr bool operator() (T l, T r) const { return l <= r; } };
template<class T> struct gequal { constexpr bool operator() (T l, T r) const { return l >= r; } };
template<class T> struct min { constexpr T operator() (T l, T r) const { return l < r ? l : r; } };
template<class T> struct max { constexpr T operator() (T l, T r) const { return l > r ? l : r; } };
}
// Functions for coalescing scalar values
template<class A> constexpr scalar_t<A> any (const A & a) { return fold(a, op::logical_or<scalar_t<A>>{}); }
template<class A> constexpr scalar_t<A> all (const A & a) { return fold(a, op::logical_and<scalar_t<A>>{}); }
template<class A> constexpr scalar_t<A> sum (const A & a) { return fold(a, op::add<scalar_t<A>>{}); }
template<class A> constexpr scalar_t<A> product(const A & a) { return fold(a, op::mul<scalar_t<A>>{}); }
template<class T, int M> int argmin(const vec<T,M> & a) { int j=0; for(int i=1; i<M; ++i) if(a[i] < a[j]) j = i; return j; }
template<class T, int M> int argmax(const vec<T,M> & a) { int j=0; for(int i=1; i<M; ++i) if(a[i] > a[j]) j = i; return j; }
template<class T, int M> T minelem(const vec<T,M> & a) { return a[argmin(a)]; }
template<class T, int M> T maxelem(const vec<T,M> & a) { return a[argmax(a)]; }
// Overloads for unary operators on vectors are implemented in terms of elementwise application of the operator
template<class A> constexpr arith_result_t<A> operator + (const A & a) { return map(a, op::pos<scalar_t<A>>{}); }
template<class A> constexpr arith_result_t<A> operator - (const A & a) { return map(a, op::neg<scalar_t<A>>{}); }
template<class A> constexpr arith_result_t<A> operator ~ (const A & a) { return map(a, op::binary_not<scalar_t<A>>{}); }
template<class A> constexpr bool_result_t<A> operator ! (const A & a) { return map(a, op::logical_not<scalar_t<A>>{}); }
// Mirror the set of unary scalar math functions to apply elementwise to vectors
template<class A> result_t<A> abs (const A & a) { return map(a, [](scalar_t<A> l) { return std::abs (l); }); }
template<class A> result_t<A> floor(const A & a) { return map(a, [](scalar_t<A> l) { return std::floor(l); }); }
template<class A> result_t<A> ceil (const A & a) { return map(a, [](scalar_t<A> l) { return std::ceil (l); }); }
template<class A> result_t<A> exp (const A & a) { return map(a, [](scalar_t<A> l) { return std::exp (l); }); }
template<class A> result_t<A> log (const A & a) { return map(a, [](scalar_t<A> l) { return std::log (l); }); }
template<class A> result_t<A> log10(const A & a) { return map(a, [](scalar_t<A> l) { return std::log10(l); }); }
template<class A> result_t<A> sqrt (const A & a) { return map(a, [](scalar_t<A> l) { return std::sqrt (l); }); }
template<class A> result_t<A> sin (const A & a) { return map(a, [](scalar_t<A> l) { return std::sin (l); }); }
template<class A> result_t<A> cos (const A & a) { return map(a, [](scalar_t<A> l) { return std::cos (l); }); }
template<class A> result_t<A> tan (const A & a) { return map(a, [](scalar_t<A> l) { return std::tan (l); }); }
template<class A> result_t<A> asin (const A & a) { return map(a, [](scalar_t<A> l) { return std::asin (l); }); }
template<class A> result_t<A> acos (const A & a) { return map(a, [](scalar_t<A> l) { return std::acos (l); }); }
template<class A> result_t<A> atan (const A & a) { return map(a, [](scalar_t<A> l) { return std::atan (l); }); }
template<class A> result_t<A> sinh (const A & a) { return map(a, [](scalar_t<A> l) { return std::sinh (l); }); }
template<class A> result_t<A> cosh (const A & a) { return map(a, [](scalar_t<A> l) { return std::cosh (l); }); }
template<class A> result_t<A> tanh (const A & a) { return map(a, [](scalar_t<A> l) { return std::tanh (l); }); }
template<class A> result_t<A> round(const A & a) { return map(a, [](scalar_t<A> l) { return std::round(l); }); }
template<class A> result_t<A> fract(const A & a) { return map(a, [](scalar_t<A> l) { return l - std::floor(l); }); }
// Overloads for vector op vector are implemented in terms of elementwise application of the operator, followed by casting back to the original type (integer promotion is suppressed)
template<class A, class B> constexpr arith_result_t<A,B> operator + (const A & a, const B & b) { return zip(a, b, op::add<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator - (const A & a, const B & b) { return zip(a, b, op::sub<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator * (const A & a, const B & b) { return zip(a, b, op::mul<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator / (const A & a, const B & b) { return zip(a, b, op::div<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator % (const A & a, const B & b) { return zip(a, b, op::mod<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator | (const A & a, const B & b) { return zip(a, b, op::binary_or<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator ^ (const A & a, const B & b) { return zip(a, b, op::binary_xor<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator & (const A & a, const B & b) { return zip(a, b, op::binary_and<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator << (const A & a, const B & b) { return zip(a, b, op::lshift<scalar_t<A,B>>{}); }
template<class A, class B> constexpr arith_result_t<A,B> operator >> (const A & a, const B & b) { return zip(a, b, op::rshift<scalar_t<A,B>>{}); }
// Overloads for assignment operators are implemented trivially
template<class A, class B> result_t<A,A> & operator += (A & a, const B & b) { return a = a + b; }
template<class A, class B> result_t<A,A> & operator -= (A & a, const B & b) { return a = a - b; }
template<class A, class B> result_t<A,A> & operator *= (A & a, const B & b) { return a = a * b; }
template<class A, class B> result_t<A,A> & operator /= (A & a, const B & b) { return a = a / b; }
template<class A, class B> result_t<A,A> & operator %= (A & a, const B & b) { return a = a % b; }
template<class A, class B> result_t<A,A> & operator |= (A & a, const B & b) { return a = a | b; }
template<class A, class B> result_t<A,A> & operator ^= (A & a, const B & b) { return a = a ^ b; }
template<class A, class B> result_t<A,A> & operator &= (A & a, const B & b) { return a = a & b; }
template<class A, class B> result_t<A,A> & operator <<= (A & a, const B & b) { return a = a << b; }
template<class A, class B> result_t<A,A> & operator >>= (A & a, const B & b) { return a = a >> b; }
// Mirror the set of binary scalar math functions to apply elementwise to vectors
template<class A, class B> constexpr result_t<A,B> min (const A & a, const B & b) { return zip(a, b, op::min<scalar_t<A,B>>{}); }
template<class A, class B> constexpr result_t<A,B> max (const A & a, const B & b) { return zip(a, b, op::max<scalar_t<A,B>>{}); }
template<class A, class B> constexpr result_t<A,B> clamp(const A & a, const B & b, const B & c) { return min(max(a,b),c); } // TODO: Revisit
template<class A, class B> result_t<A,B> fmod (const A & a, const B & b) { return zip(a, b, [](scalar_t<A,B> l, scalar_t<A,B> r) { return std::fmod (l, r); }); }
template<class A, class B> result_t<A,B> pow (const A & a, const B & b) { return zip(a, b, [](scalar_t<A,B> l, scalar_t<A,B> r) { return std::pow (l, r); }); }
template<class A, class B> result_t<A,B> atan2 (const A & a, const B & b) { return zip(a, b, [](scalar_t<A,B> l, scalar_t<A,B> r) { return std::atan2 (l, r); }); }
template<class A, class B> result_t<A,B> copysign(const A & a, const B & b) { return zip(a, b, [](scalar_t<A,B> l, scalar_t<A,B> r) { return std::copysign(l, r); }); }
// Functions for componentwise application of equivalence and relational operators
template<class A, class B> bool_result_t<A,B> equal (const A & a, const B & b) { return zip(a, b, op::equal <scalar_t<A,B>>{}); }
template<class A, class B> bool_result_t<A,B> nequal (const A & a, const B & b) { return zip(a, b, op::nequal <scalar_t<A,B>>{}); }
template<class A, class B> bool_result_t<A,B> less (const A & a, const B & b) { return zip(a, b, op::less <scalar_t<A,B>>{}); }
template<class A, class B> bool_result_t<A,B> greater(const A & a, const B & b) { return zip(a, b, op::greater<scalar_t<A,B>>{}); }
template<class A, class B> bool_result_t<A,B> lequal (const A & a, const B & b) { return zip(a, b, op::lequal <scalar_t<A,B>>{}); }
template<class A, class B> bool_result_t<A,B> gequal (const A & a, const B & b) { return zip(a, b, op::gequal <scalar_t<A,B>>{}); }
// Support for vector algebra
template<class T> constexpr T cross (const vec<T,2> & a, const vec<T,2> & b) { return a.x*b.y-a.y*b.x; }
template<class T> constexpr vec<T,3> cross (const vec<T,3> & a, const vec<T,3> & b) { return {a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x}; }
template<class T, int M> constexpr T dot (const vec<T,M> & a, const vec<T,M> & b) { return sum(a*b); }
template<class T, int M> constexpr T length2 (const vec<T,M> & a) { return dot(a,a); }
template<class T, int M> T length (const vec<T,M> & a) { return std::sqrt(length2(a)); }
template<class T, int M> vec<T,M> normalize(const vec<T,M> & a) { return a / length(a); }
template<class T, int M> constexpr T distance2(const vec<T,M> & a, const vec<T,M> & b) { return length2(b-a); }
template<class T, int M> T distance (const vec<T,M> & a, const vec<T,M> & b) { return length(b-a); }
template<class T, int M> T uangle (const vec<T,M> & a, const vec<T,M> & b) { T d=dot(a,b); return d > 1 ? 0 : std::acos(d < -1 ? -1 : d); }
template<class T, int M> T angle (const vec<T,M> & a, const vec<T,M> & b) { return uangle(normalize(a), normalize(b)); }
template<class T, int M> constexpr vec<T,M> lerp (const vec<T,M> & a, const vec<T,M> & b, T t) { return a*(1-t) + b*t; }
template<class T, int M> vec<T,M> nlerp (const vec<T,M> & a, const vec<T,M> & b, T t) { return normalize(lerp(a,b,t)); }
template<class T, int M> vec<T,M> slerp (const vec<T,M> & a, const vec<T,M> & b, T t) { T th=uangle(a,b); return th == 0 ? a : a*(std::sin(th*(1-t))/std::sin(th)) + b*(std::sin(th*t)/std::sin(th)); }
template<class T, int M> constexpr mat<T,M,2> outerprod(const vec<T,M> & a, const vec<T,2> & b) { return {a*b.x, a*b.y}; }
template<class T, int M> constexpr mat<T,M,3> outerprod(const vec<T,M> & a, const vec<T,3> & b) { return {a*b.x, a*b.y, a*b.z}; }
template<class T, int M> constexpr mat<T,M,4> outerprod(const vec<T,M> & a, const vec<T,4> & b) { return {a*b.x, a*b.y, a*b.z, a*b.w}; }
// Support for quaternion algebra using 4D vectors, representing xi + yj + zk + w
template<class T> constexpr vec<T,4> qconj(const vec<T,4> & q) { return {-q.x,-q.y,-q.z,q.w}; }
template<class T> vec<T,4> qinv (const vec<T,4> & q) { return qconj(q)/length2(q); }
template<class T> vec<T,4> qexp (const vec<T,4> & q) { const auto v = q.xyz(); const auto vv = length(v); return std::exp(q.w) * vec<T,4>{v * (vv > 0 ? std::sin(vv)/vv : 0), std::cos(vv)}; }
template<class T> vec<T,4> qlog (const vec<T,4> & q) { const auto v = q.xyz(); const auto vv = length(v), qq = length(q); return {v * (vv > 0 ? std::acos(q.w/qq)/vv : 0), std::log(qq)}; }
template<class T> vec<T,4> qpow (const vec<T,4> & q, const T & p) { const auto v = q.xyz(); const auto vv = length(v), qq = length(q), th = std::acos(q.w/qq); return std::pow(qq,p)*vec<T,4>{v * (vv > 0 ? std::sin(p*th)/vv : 0), std::cos(p*th)}; }
template<class T> constexpr vec<T,4> qmul (const vec<T,4> & a, const vec<T,4> & b) { return {a.x*b.w+a.w*b.x+a.y*b.z-a.z*b.y, a.y*b.w+a.w*b.y+a.z*b.x-a.x*b.z, a.z*b.w+a.w*b.z+a.x*b.y-a.y*b.x, a.w*b.w-a.x*b.x-a.y*b.y-a.z*b.z}; }
template<class T, class... R> constexpr vec<T,4> qmul(const vec<T,4> & a, R... r) { return qmul(a, qmul(r...)); }
// Support for 3D spatial rotations using quaternions, via qmul(qmul(q, v), qconj(q))
template<class T> constexpr vec<T,3> qxdir (const vec<T,4> & q) { return {q.w*q.w+q.x*q.x-q.y*q.y-q.z*q.z, (q.x*q.y+q.z*q.w)*2, (q.z*q.x-q.y*q.w)*2}; }
template<class T> constexpr vec<T,3> qydir (const vec<T,4> & q) { return {(q.x*q.y-q.z*q.w)*2, q.w*q.w-q.x*q.x+q.y*q.y-q.z*q.z, (q.y*q.z+q.x*q.w)*2}; }
template<class T> constexpr vec<T,3> qzdir (const vec<T,4> & q) { return {(q.z*q.x+q.y*q.w)*2, (q.y*q.z-q.x*q.w)*2, q.w*q.w-q.x*q.x-q.y*q.y+q.z*q.z}; }
template<class T> constexpr mat<T,3,3> qmat (const vec<T,4> & q) { return {qxdir(q), qydir(q), qzdir(q)}; }
template<class T> constexpr vec<T,3> qrot (const vec<T,4> & q, const vec<T,3> & v) { return qxdir(q)*v.x + qydir(q)*v.y + qzdir(q)*v.z; }
template<class T> T qangle(const vec<T,4> & q) { return std::atan2(length(q.xyz()), q.w)*2; }
template<class T> vec<T,3> qaxis (const vec<T,4> & q) { return normalize(q.xyz()); }
template<class T> vec<T,4> qnlerp(const vec<T,4> & a, const vec<T,4> & b, T t) { return nlerp(a, dot(a,b) < 0 ? -b : b, t); }
template<class T> vec<T,4> qslerp(const vec<T,4> & a, const vec<T,4> & b, T t) { return slerp(a, dot(a,b) < 0 ? -b : b, t); }
// Support for matrix algebra
template<class T, int M> constexpr vec<T,M> mul(const mat<T,M,2> & a, const vec<T,2> & b) { return a.x*b.x + a.y*b.y; }
template<class T, int M> constexpr vec<T,M> mul(const mat<T,M,3> & a, const vec<T,3> & b) { return a.x*b.x + a.y*b.y + a.z*b.z; }
template<class T, int M> constexpr vec<T,M> mul(const mat<T,M,4> & a, const vec<T,4> & b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; }
template<class T, int M, int N> constexpr mat<T,M,2> mul(const mat<T,M,N> & a, const mat<T,N,2> & b) { return {mul(a,b.x), mul(a,b.y)}; }
template<class T, int M, int N> constexpr mat<T,M,3> mul(const mat<T,M,N> & a, const mat<T,N,3> & b) { return {mul(a,b.x), mul(a,b.y), mul(a,b.z)}; }
template<class T, int M, int N> constexpr mat<T,M,4> mul(const mat<T,M,N> & a, const mat<T,N,4> & b) { return {mul(a,b.x), mul(a,b.y), mul(a,b.z), mul(a,b.w)}; }
#if _MSC_VER >= 1910
template<class T, int M, int N, class... R> constexpr auto mul(const mat<T,M,N> & a, R... r) { return mul(a, mul(r...)); }
#else
template<class T, int M, int N, class... R> constexpr auto mul(const mat<T,M,N> & a, R... r) -> decltype(mul(a, mul(r...))) { return mul(a, mul(r...)); }
#endif
template<class T> constexpr vec<T,2> diagonal(const mat<T,2,2> & a) { return {a.x.x, a.y.y}; }
template<class T> constexpr vec<T,3> diagonal(const mat<T,3,3> & a) { return {a.x.x, a.y.y, a.z.z}; }
template<class T> constexpr vec<T,4> diagonal(const mat<T,4,4> & a) { return {a.x.x, a.y.y, a.z.z, a.w.w}; }
template<class T, int M> constexpr mat<T,M,2> transpose(const mat<T,2,M> & m) { return {m.row(0), m.row(1)}; }
template<class T, int M> constexpr mat<T,M,3> transpose(const mat<T,3,M> & m) { return {m.row(0), m.row(1), m.row(2)}; }
template<class T, int M> constexpr mat<T,M,4> transpose(const mat<T,4,M> & m) { return {m.row(0), m.row(1), m.row(2), m.row(3)}; }
template<class T> constexpr mat<T,2,2> adjugate(const mat<T,2,2> & a) { return {{a.y.y, -a.x.y}, {-a.y.x, a.x.x}}; }
template<class T> constexpr mat<T,3,3> adjugate(const mat<T,3,3> & a);
template<class T> constexpr mat<T,4,4> adjugate(const mat<T,4,4> & a);
template<class T> constexpr T determinant(const mat<T,2,2> & a) { return a.x.x*a.y.y - a.x.y*a.y.x; }
template<class T> constexpr T determinant(const mat<T,3,3> & a) { return a.x.x*(a.y.y*a.z.z - a.z.y*a.y.z) + a.x.y*(a.y.z*a.z.x - a.z.z*a.y.x) + a.x.z*(a.y.x*a.z.y - a.z.x*a.y.y); }
template<class T> constexpr T determinant(const mat<T,4,4> & a);
template<class T, int N> constexpr mat<T,N,N> inverse(const mat<T,N,N> & a) { return adjugate(a)/determinant(a); }
// Vectors and matrices can be used as ranges
template<class T, int M> T * begin( vec<T,M> & a) { return &a[0]; }
template<class T, int M> const T * begin(const vec<T,M> & a) { return &a[0]; }
template<class T, int M> T * end ( vec<T,M> & a) { return begin(a) + M; }
template<class T, int M> const T * end (const vec<T,M> & a) { return begin(a) + M; }
template<class T, int M, int N> vec<T,M> * begin( mat<T,M,N> & a) { return &a[0]; }
template<class T, int M, int N> const vec<T,M> * begin(const mat<T,M,N> & a) { return &a[0]; }
template<class T, int M, int N> vec<T,M> * end ( mat<T,M,N> & a) { return begin(a) + N; }
template<class T, int M, int N> const vec<T,M> * end (const mat<T,M,N> & a) { return begin(a) + N; }
// linalg::identity is a constant which can be assigned to any square matrix type
struct identity_t
{
constexpr identity_t() {};
template<class T> constexpr operator mat<T,2,2>() const { return {{1,0},{0,1}}; }
template<class T> constexpr operator mat<T,3,3>() const { return {{1,0,0},{0,1,0},{0,0,1}}; }
template<class T> constexpr operator mat<T,4,4>() const { return {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}; }
};
static constexpr const identity_t identity {};
// Factory functions for 3D spatial transformations (will possibly be removed or changed in a future version)
enum fwd_axis { neg_z, pos_z }; // Should projection matrices be generated assuming forward is {0,0,-1} or {0,0,1}
enum z_range { neg_one_to_one, zero_to_one }; // Should projection matrices map z into the range of [-1,1] or [0,1]?
template<class T> vec<T,4> rotation_quat (const vec<T,3> & axis, T angle) { return {axis*std::sin(angle/2), std::cos(angle/2)}; }
template<class T> vec<T,4> rotation_quat (const mat<T,3,3> & m);
template<class T> mat<T,4,4> translation_matrix(const vec<T,3> & translation) { return {{1,0,0,0},{0,1,0,0},{0,0,1,0},{translation,1}}; }
template<class T> mat<T,4,4> rotation_matrix (const vec<T,4> & rotation) { return {{qxdir(rotation),0}, {qydir(rotation),0}, {qzdir(rotation),0}, {0,0,0,1}}; }
template<class T> mat<T,4,4> scaling_matrix (const vec<T,3> & scaling) { return {{scaling.x,0,0,0}, {0,scaling.y,0,0}, {0,0,scaling.z,0}, {0,0,0,1}}; }
template<class T> mat<T,4,4> pose_matrix (const vec<T,4> & q, const vec<T,3> & p) { return {{qxdir(q),0}, {qydir(q),0}, {qzdir(q),0}, {p,1}}; }
template<class T> mat<T,4,4> frustum_matrix (T x0, T x1, T y0, T y1, T n, T f, fwd_axis a = neg_z, z_range z = neg_one_to_one);
template<class T> mat<T,4,4> perspective_matrix(T fovy, T aspect, T n, T f, fwd_axis a = neg_z, z_range z = neg_one_to_one) { T y = n*std::tan(fovy / 2), x = y*aspect; return frustum_matrix(-x, x, -y, y, n, f, a, z); }
// Provide typedefs for common element types and vector/matrix sizes
namespace aliases
{
typedef vec<bool,2> bool2; typedef vec<uint8_t,2> byte2; typedef vec<int16_t,2> short2; typedef vec<uint16_t,2> ushort2;
typedef vec<bool,3> bool3; typedef vec<uint8_t,3> byte3; typedef vec<int16_t,3> short3; typedef vec<uint16_t,3> ushort3;
typedef vec<bool,4> bool4; typedef vec<uint8_t,4> byte4; typedef vec<int16_t,4> short4; typedef vec<uint16_t,4> ushort4;
typedef vec<int,2> int2; typedef vec<unsigned,2> uint2; typedef vec<float,2> float2; typedef vec<double,2> double2;
typedef vec<int,3> int3; typedef vec<unsigned,3> uint3; typedef vec<float,3> float3; typedef vec<double,3> double3;
typedef vec<int,4> int4; typedef vec<unsigned,4> uint4; typedef vec<float,4> float4; typedef vec<double,4> double4;
typedef mat<bool,2,2> bool2x2; typedef mat<int,2,2> int2x2; typedef mat<float,2,2> float2x2; typedef mat<double,2,2> double2x2;
typedef mat<bool,2,3> bool2x3; typedef mat<int,2,3> int2x3; typedef mat<float,2,3> float2x3; typedef mat<double,2,3> double2x3;
typedef mat<bool,2,4> bool2x4; typedef mat<int,2,4> int2x4; typedef mat<float,2,4> float2x4; typedef mat<double,2,4> double2x4;
typedef mat<bool,3,2> bool3x2; typedef mat<int,3,2> int3x2; typedef mat<float,3,2> float3x2; typedef mat<double,3,2> double3x2;
typedef mat<bool,3,3> bool3x3; typedef mat<int,3,3> int3x3; typedef mat<float,3,3> float3x3; typedef mat<double,3,3> double3x3;
typedef mat<bool,3,4> bool3x4; typedef mat<int,3,4> int3x4; typedef mat<float,3,4> float3x4; typedef mat<double,3,4> double3x4;
typedef mat<bool,4,2> bool4x2; typedef mat<int,4,2> int4x2; typedef mat<float,4,2> float4x2; typedef mat<double,4,2> double4x2;
typedef mat<bool,4,3> bool4x3; typedef mat<int,4,3> int4x3; typedef mat<float,4,3> float4x3; typedef mat<double,4,3> double4x3;
typedef mat<bool,4,4> bool4x4; typedef mat<int,4,4> int4x4; typedef mat<float,4,4> float4x4; typedef mat<double,4,4> double4x4;
}
}
// Provide specializations for std::hash<...> with linalg types
namespace std
{
template<class T> struct hash<linalg::vec<T,2>> { std::size_t operator()(const linalg::vec<T,2> & v) const { std::hash<T> h; return h(v.x) ^ (h(v.y) << 1); } };
template<class T> struct hash<linalg::vec<T,3>> { std::size_t operator()(const linalg::vec<T,3> & v) const { std::hash<T> h; return h(v.x) ^ (h(v.y) << 1) ^ (h(v.z) << 2); } };
template<class T> struct hash<linalg::vec<T,4>> { std::size_t operator()(const linalg::vec<T,4> & v) const { std::hash<T> h; return h(v.x) ^ (h(v.y) << 1) ^ (h(v.z) << 2) ^ (h(v.w) << 3); } };
template<class T, int M> struct hash<linalg::mat<T,M,2>> { std::size_t operator()(const linalg::mat<T,M,2> & v) const { std::hash<linalg::vec<T,M>> h; return h(v.x) ^ (h(v.y) << M); } };
template<class T, int M> struct hash<linalg::mat<T,M,3>> { std::size_t operator()(const linalg::mat<T,M,3> & v) const { std::hash<linalg::vec<T,M>> h; return h(v.x) ^ (h(v.y) << M) ^ (h(v.z) << (M*2)); } };
template<class T, int M> struct hash<linalg::mat<T,M,4>> { std::size_t operator()(const linalg::mat<T,M,4> & v) const { std::hash<linalg::vec<T,M>> h; return h(v.x) ^ (h(v.y) << M) ^ (h(v.z) << (M*2)) ^ (h(v.w) << (M*3)); } };
}
// Definitions of functions too long to be defined inline
template<class T> constexpr linalg::mat<T,3,3> linalg::adjugate(const mat<T,3,3> & a)
{
return {{a.y.y*a.z.z - a.z.y*a.y.z, a.z.y*a.x.z - a.x.y*a.z.z, a.x.y*a.y.z - a.y.y*a.x.z},
{a.y.z*a.z.x - a.z.z*a.y.x, a.z.z*a.x.x - a.x.z*a.z.x, a.x.z*a.y.x - a.y.z*a.x.x},
{a.y.x*a.z.y - a.z.x*a.y.y, a.z.x*a.x.y - a.x.x*a.z.y, a.x.x*a.y.y - a.y.x*a.x.y}};
}
template<class T> constexpr linalg::mat<T,4,4> linalg::adjugate(const mat<T,4,4> & a)
{
return {{a.y.y*a.z.z*a.w.w + a.w.y*a.y.z*a.z.w + a.z.y*a.w.z*a.y.w - a.y.y*a.w.z*a.z.w - a.z.y*a.y.z*a.w.w - a.w.y*a.z.z*a.y.w,
a.x.y*a.w.z*a.z.w + a.z.y*a.x.z*a.w.w + a.w.y*a.z.z*a.x.w - a.w.y*a.x.z*a.z.w - a.z.y*a.w.z*a.x.w - a.x.y*a.z.z*a.w.w,
a.x.y*a.y.z*a.w.w + a.w.y*a.x.z*a.y.w + a.y.y*a.w.z*a.x.w - a.x.y*a.w.z*a.y.w - a.y.y*a.x.z*a.w.w - a.w.y*a.y.z*a.x.w,
a.x.y*a.z.z*a.y.w + a.y.y*a.x.z*a.z.w + a.z.y*a.y.z*a.x.w - a.x.y*a.y.z*a.z.w - a.z.y*a.x.z*a.y.w - a.y.y*a.z.z*a.x.w},
{a.y.z*a.w.w*a.z.x + a.z.z*a.y.w*a.w.x + a.w.z*a.z.w*a.y.x - a.y.z*a.z.w*a.w.x - a.w.z*a.y.w*a.z.x - a.z.z*a.w.w*a.y.x,
a.x.z*a.z.w*a.w.x + a.w.z*a.x.w*a.z.x + a.z.z*a.w.w*a.x.x - a.x.z*a.w.w*a.z.x - a.z.z*a.x.w*a.w.x - a.w.z*a.z.w*a.x.x,
a.x.z*a.w.w*a.y.x + a.y.z*a.x.w*a.w.x + a.w.z*a.y.w*a.x.x - a.x.z*a.y.w*a.w.x - a.w.z*a.x.w*a.y.x - a.y.z*a.w.w*a.x.x,
a.x.z*a.y.w*a.z.x + a.z.z*a.x.w*a.y.x + a.y.z*a.z.w*a.x.x - a.x.z*a.z.w*a.y.x - a.y.z*a.x.w*a.z.x - a.z.z*a.y.w*a.x.x},
{a.y.w*a.z.x*a.w.y + a.w.w*a.y.x*a.z.y + a.z.w*a.w.x*a.y.y - a.y.w*a.w.x*a.z.y - a.z.w*a.y.x*a.w.y - a.w.w*a.z.x*a.y.y,
a.x.w*a.w.x*a.z.y + a.z.w*a.x.x*a.w.y + a.w.w*a.z.x*a.x.y - a.x.w*a.z.x*a.w.y - a.w.w*a.x.x*a.z.y - a.z.w*a.w.x*a.x.y,
a.x.w*a.y.x*a.w.y + a.w.w*a.x.x*a.y.y + a.y.w*a.w.x*a.x.y - a.x.w*a.w.x*a.y.y - a.y.w*a.x.x*a.w.y - a.w.w*a.y.x*a.x.y,
a.x.w*a.z.x*a.y.y + a.y.w*a.x.x*a.z.y + a.z.w*a.y.x*a.x.y - a.x.w*a.y.x*a.z.y - a.z.w*a.x.x*a.y.y - a.y.w*a.z.x*a.x.y},
{a.y.x*a.w.y*a.z.z + a.z.x*a.y.y*a.w.z + a.w.x*a.z.y*a.y.z - a.y.x*a.z.y*a.w.z - a.w.x*a.y.y*a.z.z - a.z.x*a.w.y*a.y.z,
a.x.x*a.z.y*a.w.z + a.w.x*a.x.y*a.z.z + a.z.x*a.w.y*a.x.z - a.x.x*a.w.y*a.z.z - a.z.x*a.x.y*a.w.z - a.w.x*a.z.y*a.x.z,
a.x.x*a.w.y*a.y.z + a.y.x*a.x.y*a.w.z + a.w.x*a.y.y*a.x.z - a.x.x*a.y.y*a.w.z - a.w.x*a.x.y*a.y.z - a.y.x*a.w.y*a.x.z,
a.x.x*a.y.y*a.z.z + a.z.x*a.x.y*a.y.z + a.y.x*a.z.y*a.x.z - a.x.x*a.z.y*a.y.z - a.y.x*a.x.y*a.z.z - a.z.x*a.y.y*a.x.z}};
}
template<class T> constexpr T linalg::determinant(const mat<T,4,4> & a)
{
return a.x.x*(a.y.y*a.z.z*a.w.w + a.w.y*a.y.z*a.z.w + a.z.y*a.w.z*a.y.w - a.y.y*a.w.z*a.z.w - a.z.y*a.y.z*a.w.w - a.w.y*a.z.z*a.y.w)
+ a.x.y*(a.y.z*a.w.w*a.z.x + a.z.z*a.y.w*a.w.x + a.w.z*a.z.w*a.y.x - a.y.z*a.z.w*a.w.x - a.w.z*a.y.w*a.z.x - a.z.z*a.w.w*a.y.x)
+ a.x.z*(a.y.w*a.z.x*a.w.y + a.w.w*a.y.x*a.z.y + a.z.w*a.w.x*a.y.y - a.y.w*a.w.x*a.z.y - a.z.w*a.y.x*a.w.y - a.w.w*a.z.x*a.y.y)
+ a.x.w*(a.y.x*a.w.y*a.z.z + a.z.x*a.y.y*a.w.z + a.w.x*a.z.y*a.y.z - a.y.x*a.z.y*a.w.z - a.w.x*a.y.y*a.z.z - a.z.x*a.w.y*a.y.z);
}
template<class T> linalg::vec<T,4> linalg::rotation_quat(const mat<T,3,3> & m)
{
const vec<T,4> q {m.x.x-m.y.y-m.z.z, m.y.y-m.x.x-m.z.z, m.z.z-m.x.x-m.y.y, m.x.x+m.y.y+m.z.z}, s[] {
{1, m.x.y + m.y.x, m.z.x + m.x.z, m.y.z - m.z.y},
{m.x.y + m.y.x, 1, m.y.z + m.z.y, m.z.x - m.x.z},
{m.x.z + m.z.x, m.y.z + m.z.y, 1, m.x.y - m.y.x},
{m.y.z - m.z.y, m.z.x - m.x.z, m.x.y - m.y.x, 1}};
return copysign(normalize(sqrt(max(T(0), T(1)+q))), s[argmax(q)]);
}
template<class T> linalg::mat<T,4,4> linalg::frustum_matrix(T x0, T x1, T y0, T y1, T n, T f, fwd_axis a, z_range z)
{
const T s = a == pos_z ? T(1) : T(-1), o = z == neg_one_to_one ? n : 0;
return {{2*n/(x1-x0),0,0,0}, {0,2*n/(y1-y0),0,0}, {-s*(x0+x1)/(x1-x0),-s*(y0+y1)/(y1-y0),s*(f+o)/(f-n),s}, {0,0,-(n+o)*f/(f-n),0}};
}
#endif