-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
205 lines (169 loc) · 9.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import time
import logging
from argparse import ArgumentParser
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as lrs
from sklearn.metrics import confusion_matrix
from tensorboardX import SummaryWriter
from warmup_scheduler import GradualWarmupScheduler
from esm import Alphabet
from DeepSecE.model import EffectorTransformer, ESM1bModel
from DeepSecE.dataset import TXSESequenceDataSet
from DeepSecE.utils import label2index, viz_conf_matrix
from DeepSecE.trainer import train, test, set_seed, EarlyStopping
def main(args):
set_seed(args.seed)
# Configure logging
log_dir = os.path.join(args.log_dir, f'Fold_{args.fold_num+1}')
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logging.basicConfig(handlers=[
logging.FileHandler(filename=os.path.join(log_dir, "training.log"), encoding='utf-8', mode='w+')],
format="%(asctime)s %(levelname)s:%(message)s", datefmt="%F %A %T", level=logging.INFO)
writer = SummaryWriter(log_dir)
# Configure model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if args.model == "effectortransformer":
model = EffectorTransformer(1280, 33, hid_dim=args.hid_dim, num_layers=args.num_layers,
heads=args.num_heads, dropout_rate=args.dropout_rate, num_classes=6)
elif args.model == "esm1bmodel":
model = ESM1bModel(1280, 33, unfreeze_last=True, hid_dim=args.hid_dim, dropout_rate=args.dropout_rate, num_classes=6)
else:
raise ValueError('Invalid model type!')
model.to(device)
# Configure datasets and dataloaders
alphabet = Alphabet.from_architecture("roberta_large")
train_dataset = TXSESequenceDataSet(fasta_path=os.path.join(args.data_dir, 'Train-2918.fasta'),
transform=label2index, mode='train', kfold=args.kfold, fold_num=args.fold_num, seed=args.seed)
valid_dataset = TXSESequenceDataSet(fasta_path=os.path.join(args.data_dir, 'Train-2918.fasta'),
transform=label2index, mode='valid', kfold=args.kfold, fold_num=args.fold_num, seed=args.seed)
test_dataset = TXSESequenceDataSet(fasta_path=os.path.join(args.data_dir, 'Test-260.fasta'),
transform=label2index, mode='test')
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
collate_fn=alphabet.get_batch_converter(), num_workers=args.num_workers, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size,
collate_fn=alphabet.get_batch_converter(), num_workers=args.num_workers)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size,
collate_fn=alphabet.get_batch_converter(), num_workers=args.num_workers)
# Configure loss, optimizer, scheduler, early stopping
criterion = nn.CrossEntropyLoss()
if args.model == "esm1bmodel":
optimizer_settings = [{
'params': filter(lambda p: p.requires_grad, model.pretrained_model.parameters()), 'lr': args.lr / 10
}, {
'params': filter(lambda p: p.requires_grad, model.clf.parameters()), 'lr': args.lr
}]
optimizer = optim.Adam(optimizer_settings, weight_decay=args.weight_decay)
else:
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
if args.lr_scheduler is None:
scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=args.warm_epochs)
return [optimizer], [scheduler]
else:
if args.lr_scheduler == 'step':
after_scheduler = lrs.StepLR(optimizer, step_size=args.lr_decay_steps, gamma=args.lr_decay_rate)
elif args.lr_scheduler == 'cosine':
after_scheduler = lrs.CosineAnnealingLR(optimizer, T_max=args.lr_decay_steps, eta_min=args.lr_decay_min_lr)
else:
raise ValueError('Invalid lr_scheduler type!')
scheduler = GradualWarmupScheduler(
optimizer, multiplier=1, total_epoch=args.warm_epochs, after_scheduler=after_scheduler)
early_stopping = EarlyStopping(
patience=args.patience, checkpoint_dir=log_dir)
# Training epochs
for epoch in range(args.max_epochs):
start_time = time.time()
train_loss, train_acc = train(model, train_loader, criterion, optimizer, device)
valid_loss, valid_metrics = test(model, valid_loader, criterion, device)
scheduler.step()
end_time = time.time()
epoch_secs = end_time - start_time
valid_acc = valid_metrics['Accuracy']
valid_f1 = valid_metrics['F1-score']
valid_map = valid_metrics['AUPRC']
logging.info(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_secs:.2f}s')
logging.info(f'Train Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
logging.info(f'Valid Loss: {valid_loss:.3f} | Valid Acc: {valid_acc*100:.2f}%')
logging.info(f'Valid F1: {valid_f1:.3f} | Valid mAP: {valid_map:.3f}')
writer.add_scalar('Train/Loss', train_loss, epoch+1)
writer.add_scalar('Train/Accuracy', train_acc, epoch+1)
writer.add_scalar('Valid/Loss', valid_loss, epoch+1)
for key, value in valid_metrics.items():
writer.add_scalar('Valid/' + key, value, epoch+1)
early_stopping(valid_f1, model)
if early_stopping.early_stop:
logging.info(f"Early stopping at Epoch {epoch+1}")
break
# Testing and evaluation
model.load_state_dict(torch.load(os.path.join(log_dir, 'checkpoint.pt')))
valid_best_loss, valid_best_metrics, valid_truth, valid_pred = test(model, valid_loader, criterion, device, True)
_, test_final_metrics, test_truth, test_pred = test(model, test_loader, criterion, device, True)
logging.info(f'Best Valid Loss: {valid_best_loss:.3f} | Acc: {valid_best_metrics["Accuracy"]*100:.2f}% |'
f' F1: {valid_best_metrics["F1-score"]:.3f} | mAP: {valid_best_metrics["AUPRC"]:.3f}')
logging.info(f'Final Test Acc: {test_final_metrics["Accuracy"]*100:.2f}% |'
f' F1: {test_final_metrics["F1-score"]:.3f} | mAP: {test_final_metrics["AUPRC"]:.3f}')
for key, value in valid_best_metrics.items():
writer.add_scalar('Valid/Best ' + key, value)
for key, value in test_final_metrics.items():
writer.add_scalar('Test/Final ' + key, value)
valid_cm = confusion_matrix(valid_truth, valid_pred)
test_cm = confusion_matrix(test_truth, test_pred)
labels = ['Non-effector', 'T1SE', 'T2SE', 'T3SE', 'T4SE', 'T6SE']
writer.add_figure('Valid/conf_matrix', viz_conf_matrix(valid_cm, labels))
writer.add_figure('Test/conf_matrix', viz_conf_matrix(test_cm, labels))
writer.close()
if __name__ == '__main__':
parser = ArgumentParser(description="Train a DeepSecE model for secreted effector prediction.")
# Select Model
parser.add_argument('--model', required=True, choices=['effectortransformer', 'esm1bmodel'], type=str,
help="model types available for training. [effectortransformer , esm1bmodel]")
# Basic Training Control
parser.add_argument('--batch_size', default=32, type=int,
help="bacth size used in training. (default: 32)")
parser.add_argument('--num_workers', default=4, type=int,
help="num. of workers used in dataloader")
parser.add_argument('--seed', default=42, type=int,
help="random seed used in training. (default: 42)")
parser.add_argument('--lr', default=1e-4, type=float,
help="learning rate. (default: 1e-4)")
parser.add_argument('--warm_epochs', default=1, type=int,
help="num. of epochs under warm start. (default: 1)")
parser.add_argument('--patience', default=5, type=int,
help="patience for early stopping. (default: 5")
parser.add_argument('--lr_scheduler', choices=['step', 'cosine'], type=str,
help="learning rate scheduler. [step, cosine]")
parser.add_argument('--lr_decay_steps', default=10, type=int,
help="step of learning rate decay. (default: 10)")
parser.add_argument('--lr_decay_rate', default=0.5, type=float,
help="ratio of learning rate decay. (default: 0.5)")
parser.add_argument('--lr_decay_min_lr', default=5e-6, type=float,
help="minimum value of learning rate. (default: 5e-6)")
# Training Info
parser.add_argument('--max_epochs', default=30, type=int,
help="maximum num. of epochs. (default: 30")
parser.add_argument('--data_dir', default='./data', type=str,
help="path to data. (default: ./data)")
parser.add_argument('--weight_decay', default=1e-5, type=float,
help="weight decay for regularization. (default: 1e-5)")
parser.add_argument('--log_dir', default='./logs', type=str,
help="path to the logging directory. (default: ./logs)")
# Model Hyperparameters
parser.add_argument('--hid_dim', default=256, type=int,
help="hidden dimension in the model. (default: 256)")
parser.add_argument('--num_layers', default=1, type=int,
help="num. of training transformer layers (default: 1)")
parser.add_argument('--num_heads', default=4, type=int,
help="num. of attention heads (default: 4)")
parser.add_argument('--dropout_rate', default=0.4, type=float,
help="dropout rate (default: 0.4)")
# KFold Support
parser.add_argument('--kfold', default=5, type=int,
help="num. of CV folds. (default: 5)")
parser.add_argument('--fold_num', default=0, type=int,
help="fold number (default: 0)")
args = parser.parse_args()
main(args)