-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_v2.py
253 lines (178 loc) · 9.42 KB
/
train_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/env python
import sys
from sklearn import preprocessing, model_selection
import tensorflow as tf
import pandas as pd
import numpy as np
from sklearn.externals import joblib
import argparse
from argparse import RawTextHelpFormatter
import os
from scipy import stats
def rmse(y_true, y_pred):
dev = np.square(y_true.ravel() - y_pred.ravel())
return np.sqrt(np.sum(dev) / y_true.shape[0])
def pcc(y_true, y_pred):
pcc = stats.pearsonr(y_true, y_pred)
return pcc[0]
def PCC_RMSE(y_true, y_pred):
alpha = 0.7
fsp = y_pred - tf.keras.backend.mean(y_pred)
fst = y_true - tf.keras.backend.mean(y_true)
devP = tf.keras.backend.std(y_pred)
devT = tf.keras.backend.std(y_true)
rmse = tf.keras.backend.sqrt(tf.keras.backend.mean(tf.keras.backend.square(y_pred - y_true), axis=-1))
pcc = 1.0 - tf.keras.backend.mean(fsp * fst) / (devP * devT)
#pcc = tf.where(tf.is_nan(pcc), 0.25, pcc)
return alpha * pcc + (1 - alpha) * rmse
def RMSE(y_true, y_pred):
return tf.keras.backend.sqrt(tf.keras.backend.mean(tf.keras.backend.square(y_pred - y_true), axis=-1))
def PCC(y_true, y_pred):
fsp = y_pred - tf.keras.backend.mean(y_pred)
fst = y_true - tf.keras.backend.mean(y_true)
devP = tf.keras.backend.std(y_pred)
devT = tf.keras.backend.std(y_true)
return tf.keras.backend.mean(fsp * fst) / (devP * devT)
def remove_shell_features(dat, shell_index, features_n=64):
df = dat.copy()
start = shell_index * features_n
end = start + features_n
zeroes = np.zeros((df.shape[0], features_n))
df[:, start:end] = zeroes
return df
def remove_atomtype_features(dat, feature_index, shells_n=60):
df = dat.copy()
for i in range(shells_n):
ndx = i * 64 + feature_index
zeroes = np.zeros(df.shape[0])
df[:, ndx] = zeroes
return df
def remove_all_hydrogens(dat, n_features):
df = dat.copy()
for f in df.columns.values[:n_features]:
if "H_" in f or "_H_" in f:
v = np.zeros(df.shape[0])
df[f] = v
return df
def create_model(input_size, lr=0.0001):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(32, 4, 1, input_shape=input_size))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.Conv2D(64, 4, 1))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.Conv2D(128, 4, 1))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(400, kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dense(200,
kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dense(100, kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Dense(1, kernel_regularizer=tf.keras.regularizers.l2(0.01), ))
model.add(tf.keras.layers.Activation("relu"))
sgd = tf.keras.optimizers.SGD(lr=lr, momentum=0.9, decay=1e-6, )
model.compile(optimizer=sgd, loss='mse', metrics=[PCC, RMSE])
return model
if __name__ == "__main__":
d = """Train or predict the pKa values based on protein-ligand complexes features.
Examples:
python train.py -fn1 docked_training_features_12ksamples_rmsd_lessthan3a.csv
-fn2 training_pka_features.csv -fn_val validation_features.csv
-history training_hist.csv -pKa_col pKa -train 1
"""
parser = argparse.ArgumentParser(description=d, formatter_class=RawTextHelpFormatter)
parser.add_argument("-fn_feat", type=str, default=["features_1.csv", ], nargs="+",
help="Input. The docked cplx feature set.")
parser.add_argument("-fn_pkx", type=str, default=["pkx_dataset.csv", ], nargs="+",
help="Input. The PDBBind feature set.")
parser.add_argument("-history", type=str, default="history.csv",
help="Output. The history information. ")
parser.add_argument("-pKx_col", type=str, default="pKx",
help="Input. The pKx colname as the target. ")
parser.add_argument("-scaler", type=str, default="StandardScaler.model",
help="Output. The standard scaler file to save. ")
parser.add_argument("-model", type=str, default="DNN_Model_weights.h5",
help="Output. The trained DNN model file to save. ")
parser.add_argument("-log", type=str, default="logger.csv",
help="Output. The logger file name to save. ")
parser.add_argument("-out", type=str, default="predicted_pKa.csv",
help="Output. The predicted pKa values file name to save. ")
parser.add_argument("-lr_init", type=float, default=0.001,
help="Input. Default is 0.001. The initial learning rate. ")
parser.add_argument("-epochs", type=int, default=100,
help="Input. Default is 100. The number of epochs to train. ")
parser.add_argument("-batch", type=int, default=128,
help="Input. Default is 128. The number of batch size to train. ")
parser.add_argument("-train", type=int, default=1,
help="Input. Default is 1. Whether train or predict. \n"
"1: train, 0: predict. ")
parser.add_argument("-n_features", default=3840, type=int,
help="Input. Default is 3840. Number of features in the input dataset.")
parser.add_argument("-reshape", type=int, default=[61, 66, 1], nargs="+",
help="Input. Default is 61 66 1. Reshape the dataset. ")
parser.add_argument("-remove_H", type=int, default=0,
help="Input, optional. Default is 0. Whether remove hydrogens. ")
args = parser.parse_args()
if len(sys.argv) < 3:
parser.print_help()
sys.exit(0)
X, y = np.array([]), []
do_eval = False
ytrue = []
df = pd.read_csv(args.fn_feat[0], index_col=0, header=0).dropna()
print("DataFrame Shape", df.shape, args.fn_feat)
infor = pd.read_csv(args.fn_pkx[0], index_col=0, header=0)
print("DataSet Loaded")
if args.train > 0:
scaler = preprocessing.StandardScaler()
Xs = scaler.fit_transform(df.values)
Xs = pd.DataFrame(Xs, columns=df.columns.values, index=infor.index.values)
X = Xs[(infor['is_v2013'] == 0) & (infor['is_v2016'] == 0)]
y = infor[(infor['is_v2013'] == 0) & (infor['is_v2016'] == 0)][args.pKx_col].values
print("Train, validate shape ", X.shape, y.shape)
Xtrain, Xval, ytrain, yval = model_selection.train_test_split(X.values, y,
test_size=0.2)
Xtrain = Xtrain.reshape((-1, args.reshape[0], args.reshape[1], args.reshape[2]))
Xval = Xval.reshape((-1, args.reshape[0], args.reshape[1], args.reshape[2]))
Xtest_v2016 = Xs[infor['is_v2016'] == 1].values.reshape((-1, args.reshape[0],
args.reshape[1],
args.reshape[2]))
ytest_v2016 = infor[infor['is_v2016'] == 1][args.pKx_col].values
joblib.dump(scaler, args.scaler)
print("DataSet Scaled")
model = create_model((args.reshape[0], args.reshape[1], args.reshape[2]), lr=args.lr_init)
# callbacks
stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0.001, patience=20, verbose=1,
mode='auto', )
logger = tf.keras.callbacks.CSVLogger(args.log, separator=',', append=False)
#bestmodel = tf.keras.callbacks.ModelCheckpoint(filepath="bestmodel_" + args.model, verbose=1,
# save_best_only=True)
# train the model
history = model.fit(Xtrain, ytrain, validation_data=(Xval, yval),
batch_size=args.batch, epochs=args.epochs, verbose=1,
callbacks=[stop, logger]) #bestmodel])
model.save_weights(args.model)
print("Save model. ")
ypred = model.predict(Xtest_v2016).ravel()
rmse_v2016 = rmse(ytest_v2016, ypred)
pcc_v2016 = pcc(ytest_v2016, ypred)
print("RMSE (v2016): %.3f \nPCC (v2016): %.3f \n" % (rmse_v2016, pcc_v2016))
else:
scaler = joblib.load(args.scaler)
Xs = scaler.transform(X).reshape((-1, args.reshape[0], args.reshape[1], args.reshape[2]))
model = tf.keras.models.load_model(args.model,
custom_objects={'RMSE': RMSE,
'PCC': PCC,
'PCC_RMSE': PCC_RMSE})
ypred = pd.DataFrame()
ypred['pKa_predicted'] = model.predict(Xs).ravel()
if do_eval:
print("PCC : %.3f" % pcc(ypred['pKa_predicted'].values, ytrue))
print("RMSE: %.3f" % rmse(ypred['pKa_predicted'].values, ytrue))
ypred['pKa_true'] = ytrue
ypred.to_csv(args.out, header=True, index=True, float_format="%.3f")