-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathcodec.c
770 lines (676 loc) · 19.9 KB
/
codec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Name: codec.cpp
// Purpose:
// Author: Ulrich Telle
// Modified by:
// Created: 2006-12-06
// RCS-ID: $$
// Copyright: (c) Ulrich Telle
// Licence: wxWindows licence + RSA Data Security license
///////////////////////////////////////////////////////////////////////////////
/// \file codec.cpp Implementation of MD5, RC4 and AES algorithms
*/
/*
**********************************************************************
** Copyright (C) 1990, RSA Data Security, Inc. All rights reserved. **
** **
** License to copy and use this software is granted provided that **
** it is identified as the "RSA Data Security, Inc. MD5 Message **
** Digest Algorithm" in all material mentioning or referencing this **
** software or this function. **
** **
** License is also granted to make and use derivative works **
** provided that such works are identified as "derived from the RSA **
** Data Security, Inc. MD5 Message Digest Algorithm" in all **
** material mentioning or referencing the derived work. **
** **
** RSA Data Security, Inc. makes no representations concerning **
** either the merchantability of this software or the suitability **
** of this software for any particular purpose. It is provided "as **
** is" without express or implied warranty of any kind. **
** **
** These notices must be retained in any copies of any part of this **
** documentation and/or software. **
**********************************************************************
*/
#include "codec.h"
#ifndef SQLITE_USER_AUTHENTICATION
#if CODEC_TYPE == CODEC_TYPE_AES256
#include "sha2.h"
#include "sha2.c"
#endif
#endif
/*
// ----------------
// MD5 by RSA
// ----------------
// C headers for MD5
*/
#include <sys/types.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define MD5_HASHBYTES 16
/*
/// Structure representing an MD5 context while ecrypting. (For internal use only)
*/
typedef struct MD5Context
{
unsigned int buf[4];
unsigned int bits[2];
unsigned char in[64];
} MD5_CTX;
static void MD5Init(MD5_CTX *context);
static void MD5Update(MD5_CTX *context, unsigned char *buf, unsigned len);
static void MD5Final(unsigned char digest[MD5_HASHBYTES], MD5_CTX *context);
static void MD5Transform(unsigned int buf[4], unsigned int in[16]);
static void byteReverse(unsigned char *buf, unsigned longs);
/*
* Note: this code is harmless on little-endian machines.
*/
static void byteReverse(unsigned char *buf, unsigned longs)
{
static int littleEndian = -1;
if (littleEndian < 0)
{
/* Are we little or big endian? This method is from Harbison & Steele. */
union
{
long l;
char c[sizeof(long)];
} u;
u.l = 1;
littleEndian = (u.c[0] == 1) ? 1 : 0;
}
if (littleEndian != 1)
{
unsigned int t;
do
{
t = (unsigned int) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
((unsigned) buf[1] << 8 | buf[0]);
*(unsigned int *) buf = t;
buf += 4;
}
while (--longs);
}
}
#if 0
static char* MD5End(MD5_CTX *, char *);
static char* MD5End(MD5_CTX *ctx, char *buf)
{
int i;
unsigned char digest[MD5_HASHBYTES];
char hex[]="0123456789abcdef";
if (!buf)
{
buf = (char *)malloc(33);
}
if (!buf)
{
return 0;
}
MD5Final(digest,ctx);
for (i=0;i<MD5_HASHBYTES;i++)
{
buf[i+i] = hex[digest[i] >> 4];
buf[i+i+1] = hex[digest[i] & 0x0f];
}
buf[i+i] = '\0';
return buf;
}
#endif
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
static void MD5Final(unsigned char digest[16], MD5_CTX *ctx)
{
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8)
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (unsigned int *) ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
}
else
{
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((unsigned int *) ctx->in)[14] = ctx->bits[0];
((unsigned int *) ctx->in)[15] = ctx->bits[1];
MD5Transform(ctx->buf, (unsigned int *) ctx->in);
byteReverse((unsigned char *) ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
memset((char *) ctx, 0, sizeof(ctx)); /* In case it's sensitive */
}
static void MD5Init(MD5_CTX *ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
static void MD5Update(MD5_CTX *ctx, unsigned char *buf, unsigned len)
{
unsigned int t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((unsigned int) len << 3)) < t)
{
ctx->bits[1]++; /* Carry from low to high */
}
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t)
{
unsigned char *p = (unsigned char *) ctx->in + t;
t = 64 - t;
if (len < t)
{
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (unsigned int *) ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64)
{
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (unsigned int *) ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(unsigned int buf[4], unsigned int in[16])
{
register unsigned int a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
// ---------------------------
// RC4 implementation
// ---------------------------
*/
/**
* RC4 is the standard encryption algorithm used in PDF format
*/
void
CodecRC4(Codec* codec, unsigned char* key, int keylen,
unsigned char* textin, int textlen,
unsigned char* textout)
{
int i;
int j;
int t;
unsigned char rc4[256];
int a = 0;
int b = 0;
unsigned char k;
for (i = 0; i < 256; i++)
{
rc4[i] = i;
}
j = 0;
for (i = 0; i < 256; i++)
{
t = rc4[i];
j = (j + t + key[i % keylen]) % 256;
rc4[i] = rc4[j];
rc4[j] = t;
}
for (i = 0; i < textlen; i++)
{
a = (a + 1) % 256;
t = rc4[a];
b = (b + t) % 256;
rc4[a] = rc4[b];
rc4[b] = t;
k = rc4[(rc4[a] + rc4[b]) % 256];
textout[i] = textin[i] ^ k;
}
}
void
CodecGetMD5Binary(Codec* codec, unsigned char* data, int length, unsigned char* digest)
{
MD5_CTX ctx;
MD5Init(&ctx);
MD5Update(&ctx, data, length);
MD5Final(digest,&ctx);
}
#if CODEC_TYPE == CODEC_TYPE_AES256
void
CodecGetSHABinary(Codec* codec, unsigned char* data, int length, unsigned char* digest)
{
sha256(data, (unsigned int) length, digest);
}
#endif
#define MODMULT(a, b, c, m, s) q = s / a; s = b * (s - a * q) - c * q; if (s < 0) s += m
void
CodecGenerateInitialVector(Codec* codec, int seed, unsigned char iv[16])
{
unsigned char initkey[16];
int j, q;
int z = seed + 1;
for (j = 0; j < 4; j++)
{
MODMULT(52774, 40692, 3791, 2147483399L, z);
initkey[4*j+0] = 0xff & z;
initkey[4*j+1] = 0xff & (z >> 8);
initkey[4*j+2] = 0xff & (z >> 16);
initkey[4*j+3] = 0xff & (z >> 24);
}
CodecGetMD5Binary(codec, (unsigned char*) initkey, 16, iv);
}
void
CodecAES(Codec* codec, int page, int encrypt, unsigned char encryptionKey[KEYLENGTH],
unsigned char* datain, int datalen, unsigned char* dataout)
{
unsigned char initial[16];
unsigned char pagekey[KEYLENGTH];
unsigned char nkey[KEYLENGTH+4+4];
int keyLength = KEYLENGTH;
int nkeylen = keyLength + 4 + 4;
int j;
int direction = (encrypt) ? RIJNDAEL_Direction_Encrypt : RIJNDAEL_Direction_Decrypt;
int len = 0;
for (j = 0; j < keyLength; j++)
{
nkey[j] = encryptionKey[j];
}
nkey[keyLength+0] = 0xff & page;
nkey[keyLength+1] = 0xff & (page >> 8);
nkey[keyLength+2] = 0xff & (page >> 16);
nkey[keyLength+3] = 0xff & (page >> 24);
/* AES encryption needs some 'salt' */
nkey[keyLength+4] = 0x73;
nkey[keyLength+5] = 0x41;
nkey[keyLength+6] = 0x6c;
nkey[keyLength+7] = 0x54;
#if CODEC_TYPE == CODEC_TYPE_AES256
CodecGetSHABinary(codec, nkey, nkeylen, pagekey);
#else
CodecGetMD5Binary(codec, nkey, nkeylen, pagekey);
#endif
CodecGenerateInitialVector(codec, page, initial);
#if CODEC_TYPE == CODEC_TYPE_AES256
RijndaelInit(codec->m_aes, RIJNDAEL_Direction_Mode_CBC, direction, pagekey, RIJNDAEL_Direction_KeyLength_Key32Bytes, initial);
#else
RijndaelInit(codec->m_aes, RIJNDAEL_Direction_Mode_CBC, direction, pagekey, RIJNDAEL_Direction_KeyLength_Key16Bytes, initial);
#endif
if (encrypt)
{
len = RijndaelBlockEncrypt(codec->m_aes, datain, datalen*8, dataout);
}
else
{
len = RijndaelBlockDecrypt(codec->m_aes, datain, datalen*8, dataout);
}
/* It is a good idea to check the error code */
if (len < 0)
{
/* AES: Error on encrypting. */
}
}
static unsigned char padding[] =
"\x28\xBF\x4E\x5E\x4E\x75\x8A\x41\x64\x00\x4E\x56\xFF\xFA\x01\x08\x2E\x2E\x00\xB6\xD0\x68\x3E\x80\x2F\x0C\xA9\xFE\x64\x53\x69\x7A";
void
CodecInit(Codec* codec)
{
codec->m_isEncrypted = 0;
codec->m_hasReadKey = 0;
codec->m_hasWriteKey = 0;
codec->m_aes = (Rijndael*) sqlite3_malloc(sizeof(Rijndael));
RijndaelCreate(codec->m_aes);
}
void
CodecTerm(Codec* codec)
{
sqlite3_free(codec->m_aes);
}
void
CodecSetIsEncrypted(Codec* codec, int isEncrypted)
{
codec->m_isEncrypted = isEncrypted;
}
void
CodecSetHasReadKey(Codec* codec, int hasReadKey)
{
codec->m_hasReadKey = hasReadKey;
}
void
CodecSetHasWriteKey(Codec* codec, int hasWriteKey)
{
codec->m_hasWriteKey = hasWriteKey;
}
void
CodecSetBtree(Codec* codec, Btree* bt)
{
codec->m_bt = bt;
}
int
CodecIsEncrypted(Codec* codec)
{
return codec->m_isEncrypted;
}
int
CodecHasReadKey(Codec* codec)
{
return codec->m_hasReadKey;
}
int
CodecHasWriteKey(Codec* codec)
{
return codec->m_hasWriteKey;
}
Btree*
CodecGetBtree(Codec* codec)
{
return codec->m_bt;
}
unsigned char*
CodecGetPageBuffer(Codec* codec)
{
return &codec->m_page[4];
}
void
CodecCopy(Codec* codec, Codec* other)
{
int j;
codec->m_isEncrypted = other->m_isEncrypted;
codec->m_hasReadKey = other->m_hasReadKey;
codec->m_hasWriteKey = other->m_hasWriteKey;
for (j = 0; j < KEYLENGTH; j++)
{
codec->m_readKey[j] = other->m_readKey[j];
codec->m_writeKey[j] = other->m_writeKey[j];
}
codec->m_bt = other->m_bt;
RijndaelInvalidate(codec->m_aes);
}
void
CodecCopyKey(Codec* codec, int read2write)
{
int j;
if (read2write)
{
for (j = 0; j < KEYLENGTH; j++)
{
codec->m_writeKey[j] = codec->m_readKey[j];
}
}
else
{
for (j = 0; j < KEYLENGTH; j++)
{
codec->m_readKey[j] = codec->m_writeKey[j];
}
}
}
void
CodecPadPassword(Codec* codec, char* password, int pswdlen, unsigned char pswd[32])
{
int j;
int p = 0;
int m = pswdlen;
if (m > 32) m = 32;
for (j = 0; j < m; j++)
{
pswd[p++] = (unsigned char) password[j];
}
for (j = 0; p < 32 && j < 32; j++)
{
pswd[p++] = padding[j];
}
}
void
CodecGenerateReadKey(Codec* codec, char* userPassword, int passwordLength)
{
CodecGenerateEncryptionKey(codec, userPassword, passwordLength, codec->m_readKey);
}
void
CodecGenerateWriteKey(Codec* codec, char* userPassword, int passwordLength)
{
CodecGenerateEncryptionKey(codec, userPassword, passwordLength, codec->m_writeKey);
}
void
CodecGenerateEncryptionKey(Codec* codec, char* userPassword, int passwordLength,
unsigned char encryptionKey[KEYLENGTH])
{
#if CODEC_TYPE == CODEC_TYPE_AES256
unsigned char userPad[32];
unsigned char digest[KEYLENGTH];
int keyLength = KEYLENGTH;
int k;
/* Pad password */
CodecPadPassword(codec, userPassword, passwordLength, userPad);
sha256(userPad, 32, digest);
for (k = 0; k < CODEC_SHA_ITER; ++k)
{
sha256(digest, KEYLENGTH, digest);
}
memcpy(encryptionKey, digest, keyLength);
#else
unsigned char userPad[32];
unsigned char ownerPad[32];
unsigned char ownerKey[32];
unsigned char mkey[MD5_HASHBYTES];
unsigned char digest[MD5_HASHBYTES];
int keyLength = MD5_HASHBYTES;
int i, j, k;
MD5_CTX ctx;
/* Pad passwords */
CodecPadPassword(codec, userPassword, passwordLength, userPad);
CodecPadPassword(codec, "", 0, ownerPad);
/* Compute owner key */
MD5Init(&ctx);
MD5Update(&ctx, ownerPad, 32);
MD5Final(digest,&ctx);
/* only use for the input as many bit as the key consists of */
for (k = 0; k < 50; ++k)
{
MD5Init(&ctx);
MD5Update(&ctx, digest, keyLength);
MD5Final(digest,&ctx);
}
memcpy(ownerKey, userPad, 32);
for (i = 0; i < 20; ++i)
{
for (j = 0; j < keyLength ; ++j)
{
mkey[j] = (digest[j] ^ i);
}
CodecRC4(codec, mkey, keyLength, ownerKey, 32, ownerKey);
}
/* Compute encryption key */
MD5Init(&ctx);
MD5Update(&ctx, userPad, 32);
MD5Update(&ctx, ownerKey, 32);
MD5Final(digest,&ctx);
/* only use the really needed bits as input for the hash */
for (k = 0; k < 50; ++k)
{
MD5Init(&ctx);
MD5Update(&ctx, digest, keyLength);
MD5Final(digest, &ctx);
}
memcpy(encryptionKey, digest, keyLength);
#endif
}
void
CodecEncrypt(Codec* codec, int page, unsigned char* data, int len, int useWriteKey)
{
#ifdef WXSQLITE3_USE_OLD_ENCRYPTION_SCHEME
/* Use the previous encryption scheme */
unsigned char* key = (useWriteKey) ? codec->m_writeKey : codec->m_readKey;
CodecAES(codec, page, 1, key, data, len, data);
#else
unsigned char dbHeader[8];
int offset = 0;
unsigned char* key = (useWriteKey) ? codec->m_writeKey : codec->m_readKey;
if (page == 1)
{
/* Save the header bytes remaining unencrypted */
memcpy(dbHeader, data+16, 8);
offset = 16;
CodecAES(codec, page, 1, key, data, 16, data);
}
CodecAES(codec, page, 1, key, data+offset, len-offset, data+offset);
if (page == 1)
{
/* Move the encrypted header bytes 16..23 to a safe position */
memcpy(data+8, data+16, 8);
/* Restore the unencrypted header bytes 16..23 */
memcpy(data+16, dbHeader, 8);
}
#endif
}
void
CodecDecrypt(Codec* codec, int page, unsigned char* data, int len)
{
#ifdef WXSQLITE3_USE_OLD_ENCRYPTION_SCHEME
/* Use the previous encryption scheme */
CodecAES(codec, page, 0, codec->m_readKey, data, len, data);
#else
unsigned char dbHeader[8];
int dbPageSize;
int offset = 0;
if (page == 1)
{
/* Save (unencrypted) header bytes 16..23 */
memcpy(dbHeader, data+16, 8);
/* Determine page size */
dbPageSize = (dbHeader[0] << 8) | (dbHeader[1] << 16);
/* Check whether the database header is valid */
/* If yes, the database follows the new encryption scheme, otherwise use the previous encryption scheme */
if ((dbPageSize >= 512) && (dbPageSize <= SQLITE_MAX_PAGE_SIZE) && (((dbPageSize-1) & dbPageSize) == 0) &&
(dbHeader[5] == 0x40) && (dbHeader[6] == 0x20) && (dbHeader[7] == 0x20))
{
/* Restore encrypted bytes 16..23 for new encryption scheme */
memcpy(data+16, data+8, 8);
offset = 16;
}
}
CodecAES(codec, page, 0, codec->m_readKey, data+offset, len-offset, data+offset);
if (page == 1 && offset != 0)
{
/* Verify the database header */
if (memcmp(dbHeader, data+16, 8) == 0)
{
memcpy(data, SQLITE_FILE_HEADER, 16);
}
}
#endif
}