-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifiers.py
209 lines (167 loc) · 6.1 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
from iisignature import sig, logsig, prepare
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import StandardScaler, FunctionTransformer
from sklearn.base import BaseEstimator, TransformerMixin, clone
from sklearn.ensemble import VotingClassifier
from sklearn.model_selection import cross_val_score
class SigFeatures(BaseEstimator, TransformerMixin):
def __init__(self, level=3):
self.level = level
def fit(self, X, y=None):
return self
def transform(self, X):
return np.array([sig(x, self.level) for x in X])
class LogSigFeatures(BaseEstimator, TransformerMixin):
def __init__(self, level=3, dim=2):
self.level = level
self.dim = dim
def fit(self, X, y=None):
return self
def transform(self, X):
prepared = prepare(self.dim, self.level)
return np.array([logsig(x, prepared) for x in X])
class Embedding(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self
def transform_instance(self, X):
raise NotImplementedError
def transform(self, X):
return [self.transform_instance(x) for x in X]
class LeadLag(Embedding):
def transform_instance(self, X):
lead = np.transpose([X, X]).flatten()[1:]
lag = np.transpose([X, X]).flatten()[0:-1]
return np.transpose([lead, lag])
class TimeIndexed(Embedding):
def __init__(self, init_time=0., total_time=1.):
self.init_time = init_time
self.total_time = total_time
def fit(self, X, y=None):
return self
def transform_instance(self, X):
t = np.linspace(self.init_time, self.init_time + 1, len(X))
return np.c_[t, X]
class TimeJoined(Embedding):
def transform_instance(self, X):
Y = X.transpose()
t = np.transpose([Y[0], Y[0]]).flatten()
Z = np.insert(np.transpose([Y[1], Y[1]]).flatten()[0:-1], 0,0)
return np.transpose([t,Z])
class FlatCOTE(VotingClassifier):
def __init__(self, estimators, cv=3, n_jobs=None, flatten_transform=True):
super().__init__(estimators, voting='soft', weights=None, n_jobs=n_jobs,
flatten_transform=flatten_transform)
self.cv = cv
def fit(self, X, y):
super().fit(X, y)
self.weights = [cross_val_score(clf, X, y, cv=self.cv).mean()
for clf in self.estimators_]
return self
def create_concatenator(clf, sig_type='logsig', level=3, dim=2):
if sig_type == 'logsig':
if not dim:
raise
sig_features = LogSigFeatures(level=level, dim=dim)
else:
sig_features = SigFeatures(level=level)
leadlag = Pipeline([
('leadlag', LeadLag()),
('signature', sig_features),
('scale', StandardScaler()),
])
timeindexed = Pipeline([
('timeind', TimeIndexed()),
('signature', sig_features),
('scale', StandardScaler()),
])
timejoined = Pipeline([
('timeind', TimeIndexed()),
('timejoin', TimeJoined()),
('signature', sig_features),
('scale', StandardScaler()),
])
partial_sum = lambda X : np.cumsum(X, axis=1)
ps_leadlag = Pipeline([
('partialsum', FunctionTransformer(partial_sum, validate=False)),
('leadlag', LeadLag()),
('signature', sig_features),
('scale', StandardScaler()),
])
ps_timeindexed = Pipeline([
('partialsum', FunctionTransformer(partial_sum, validate=False)),
('timeind', TimeIndexed()),
('signature', sig_features),
('scale', StandardScaler()),
])
ps_timejoined = Pipeline([
('partialsum', FunctionTransformer(partial_sum, validate=False)),
('timeind', TimeIndexed()),
('timejoin', TimeJoined()),
('signature', sig_features),
('scale', StandardScaler()),
])
union = FeatureUnion([
('leadlag', leadlag),
('timejoined', timejoined),
('timeindexed', timeindexed),
('ps_leadlag', ps_leadlag),
('ps_timejoined', ps_timejoined),
('ps_timeindexed', ps_timeindexed),
])
return Pipeline([
('union', union),
('classifier', clf)
])
def create_vote_clf(clf, level=3, voter=FlatCOTE, **vote_args):
leadlag = Pipeline([
('leadlag', LeadLag()),
('signature', SigFeatures(level=level)),
('scale', StandardScaler()),
('classifier', clone(clf)),
])
timeindexed = Pipeline([
('timeind', TimeIndexed()),
('signature', SigFeatures(level=level)),
('scale', StandardScaler()),
('classifier', clone(clf)),
])
timejoined = Pipeline([
('timeind', TimeIndexed()),
('timejoin', TimeJoined()),
('signature', SigFeatures(level=level)),
('scale', StandardScaler()),
('classifier', clone(clf)),
])
partial_sum = lambda X : np.cumsum(X, axis=1)
ps_leadlag = Pipeline([
('partialsum', FunctionTransformer(partial_sum, validate=False)),
('leadlag', LeadLag()),
('signature', SigFeatures(level=level)),
('scale', StandardScaler()),
('classifier', clone(clf)),
])
ps_timeindexed = Pipeline([
('partialsum', FunctionTransformer(partial_sum, validate=False)),
('timeind', TimeIndexed()),
('signature', SigFeatures(level=level)),
('scale', StandardScaler()),
('classifier', clone(clf)),
])
ps_timejoined = Pipeline([
('partialsum', FunctionTransformer(partial_sum, validate=False)),
('timeind', TimeIndexed()),
('timejoin', TimeJoined()),
('signature', SigFeatures(level=level)),
('scale', StandardScaler()),
('classifier', clone(clf)),
])
vote = voter([
('leadlag', leadlag),
('timejoined', timejoined),
('timeindexed', timeindexed),
('ps_leadlag', ps_leadlag),
('ps_timejoined', ps_timejoined),
('ps_timeindexed', ps_timeindexed),
], **vote_args)
return vote