-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
127 lines (98 loc) · 4.08 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
import numpy as np
from iisignature import sig, logsig, prepare
from sklearn import preprocessing
class SigModel:
"""
Signature classification/regression model.
Params:
model: (class) sklearn classification/regression model to use
level: (int) signature truncation level to use
transform: (callable) path embedding function, e.g., SigModel.leadlag
scale: (bool) whether to apply column-wise scaling of signature features
using to sklearn.preprocessing.scale.
"""
def __init__(self, model, level=2, transform=lambda x: x, scale=True, **model_args):
self.level = level
self.model = model(**model_args)
self.transform = transform
self.scale = scale
def preprocess(self, X):
"""
Preprocess training/testing data using signatures.
"""
data = [sig(self.transform(x), self.level) for x in X]
if self.scale:
data = preprocessing.scale(data)
return data
def train(self, X, Y):
"""Train the signature model"""
assert len(X) == len(Y)
self.model.fit(np.array(self.preprocess(X)), Y)
def predict(self, X):
"""Predict using trained model"""
return self.model.predict(self.preprocess(X))
def score(self, X, Y):
"""Output score of trained model, depends on used model"""
return self.model.score(self.preprocess(X), Y)
@staticmethod
def time_indexed(X):
"""
Turn 1-dimensional list into 2-dimensional list of points by adding
list index.
Params:
X: (list) 1-dimensional list of length N to be transformed
Returns: (list) 2-dimensional list of shape (N, 2)
"""
if not np.shape(X) == (len(X),):
raise ValueError("Input does not have correct shape")
return np.transpose([np.arange(len(X)), X])
@staticmethod
def lead_lag(X):
"""
Compute lead-lag transformation of 1-dimensional list of values.
Params:
X: (list) 1-dimensional list of length N to be transformed
Returns: (list) 2-dimensional list of shape (N, 2)
"""
if not np.shape(X) == (len(X),):
raise ValueError("Input does not have correct shape")
lead = np.transpose([X, X]).flatten()[1:]
lag = np.transpose([X, X]).flatten()[0:-1]
return np.transpose([lead, lag])
@staticmethod
def time_joined(X):
"""
Compute time-joined transformation of a path.
Params:
X: (list) a list of shape (N,2) or (N,) with N length of path; in
the case of (N,2), the first component of the path must be the
time index.
Returns: (list) dimensional list of shape (N, 2)
"""
if np.shape(X) == (len(X),):
# if there is no time index, we simply use the list index
Y = np.array([np.arange(len(X)), X])
elif np.shape(X) == (len(X), 2):
Y = np.transpose(X)
else:
raise ValueError("Input does not have correct shape")
t = np.transpose([Y[0], Y[0]]).flatten()
Z = np.insert(np.transpose([Y[1], Y[1]]).flatten()[0:-1], 0,0)
return np.transpose([t,Z])
class LogSigModel(SigModel):
"""
Classification/regression model using log signature features.
Params:
model: (class) sklearn classification/regression model to use
dim: dimension of transformed path, needed for iisignature
level: (int) signature truncation level to use
transform: (callable) path embedding function, e.g., SigModel.leadlag
scale: (bool) whether to apply column-wise scaling of signature features
using to sklearn.preprocessing.scale.
"""
def __init__(self, model, dim, level=2, transform=lambda x: x, **model_args):
self.prepared = prepare(dim, level) # iisignature prepare log signature
super().__init__(model, level, transform, **model_args)
def preprocess(self, X):
return [logsig(self.transform(x), self.prepared) for x in X]