-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtasks.py
396 lines (334 loc) · 13.7 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import pandas as pd
import numpy as np
import pathlib
import luigi
import timeit
import classifiers
from model import SigModel, LogSigModel
from sktime.utils.load_data import load_from_arff_to_dataframe
from xgboost import XGBClassifier
import sklearn
from sklearn.linear_model import LogisticRegression, Lasso
from sklearn.svm import LinearSVC
from sklearn.neighbors import KNeighborsClassifier
import pickle
DATA_DIR = pathlib.Path('NewTSCProblems')
MULT_DATA_DIR = pathlib.Path('MultivariateTSCProblems')
PIPELINE_DIR = pathlib.Path('pipeline') # directory to store results
TRANSFORMS = {
'leadlag': SigModel.lead_lag,
'timejoined': SigModel.time_joined,
'timeindexed': lambda X: [(t,x) for t,x in enumerate(X)]
}
DATASETS = [
"ACSF1", "Adiac", "AllGestureWiimoteX", "AllGestureWiimoteY",
"AllGestureWiimoteZ", "ArrowHead", "Beef", "BeetleFly", "BirdChicken",
"BME", "Car", "CBF", "Chinatown", "ChlorineConcentration",
"CinCECGTorso", "Coffee", "Computers", "CricketX", "CricketY",
"CricketZ", "Crop", "DiatomSizeReduction",
"DistalPhalanxOutlineAgeGroup", "DistalPhalanxOutlineCorrect",
"DistalPhalanxTW", "DodgerLoopDay", "DodgerLoopGame",
"DodgerLoopWeekend", "Earthquakes", "ECG200", "ECG5000", "ECGFiveDays",
"ElectricDevices", "EOGHorizontalSignal", "EOGVerticalSignal",
"EthanolLevel", "FaceAll", "FaceFour", "FacesUCR", "FiftyWords",
"Fish", "FordA", "FordB", "FreezerRegularTrain", "FreezerSmallTrain",
"Fungi", "GestureMidAirD1", "GestureMidAirD2", "GestureMidAirD3",
"GesturePebbleZ1", "GesturePebbleZ2", "GunPoint", "GunPointAgeSpan",
"GunPointMaleVersusFemale", "GunPointOldVersusYoung", "Ham",
"HandOutlines", "Haptics", "Herring", "HouseTwenty", "InlineSkate",
"InsectEPGRegularTrain", "InsectEPGSmallTrain", "InsectWingbeatSound",
"ItalyPowerDemand", "LargeKitchenAppliances", "Lightning2",
"Lightning7", "Mallat", "Meat", "MedicalImages", "MelbournePedestrian",
"MiddlePhalanxOutlineAgeGroup", "MiddlePhalanxOutlineCorrect",
"MiddlePhalanxTW", "MixedShapesRegularTrain", "MixedShapesSmallTrain",
"MoteStrain", "NonInvasiveFatalECGThorax1",
"NonInvasiveFatalECGThorax2", "OliveOil", "OSULeaf",
"PhalangesOutlinesCorrect", "Phoneme", "PickupGestureWiimoteZ",
"PigAirwayPressure", "PigArtPressure", "PigCVP", "PLAID", "Plane",
"PowerCons", "ProximalPhalanxOutlineAgeGroup",
"ProximalPhalanxOutlineCorrect", "ProximalPhalanxTW",
"RefrigerationDevices", "Rock", "ScreenType", "SemgHandGenderCh2",
"SemgHandMovementCh2", "SemgHandSubjectCh2", "ShakeGestureWiimoteZ",
"ShapeletSim", "ShapesAll", "SmallKitchenAppliances", "SmoothSubspace",
"SonyAIBORobotSurface1", "SonyAIBORobotSurface2", "StarLightCurves",
"Strawberry", "SwedishLeaf", "Symbols", "SyntheticControl",
"ToeSegmentation1", "ToeSegmentation2", "Trace", "TwoLeadECG",
"TwoPatterns", "UCR_archive_2018_to_release", "UMD",
"UWaveGestureLibraryAll", "UWaveGestureLibraryX",
"UWaveGestureLibraryY", "UWaveGestureLibraryZ", "Wafer", "Wine",
"WordSynonyms", "Worms", "WormsTwoClass", "Yoga",
]
def load_data(dataset, datadir=DATA_DIR):
"""
Load UCR training and testing data from ARFF file and return each as numpy arrays.
"""
X_train, y_train = load_from_arff_to_dataframe(datadir/dataset/f"{dataset}_TRAIN.arff")
X_test, y_test = load_from_arff_to_dataframe(datadir/dataset/f"{dataset}_TEST.arff")
def parse_to_np(data):
return np.array([x for x in data['dim_0']])
X_train = parse_to_np(X_train)
X_test = parse_to_np(X_test)
return (X_train, y_train, X_test, y_test)
def load_mult_data(dataset, datadir=MULT_DATA_DIR):
"""
Load UES data from ARFF file and return as 3D numpy arrays.
"""
X_train, y_train = load_from_arff_to_dataframe(datadir/dataset/f"{dataset}_TRAIN.arff")
X_test, y_test = load_from_arff_to_dataframe(datadir/dataset/f"{dataset}_TEST.arff")
def parse_to_np(data):
return np.array([pd.concat(row.values, axis=1).values
for i, row in data.iterrows()])
X_train = parse_to_np(X_train)
X_test = parse_to_np(X_test)
return (X_train, y_train, X_test, y_test)
def load_results(filename, results_dir='./results/ucr', datasets=DATASETS):
"""
Load all results stored as a .pkl file.
"""
r = []
missing = []
names = []
for d in datasets:
try:
data = pd.read_pickle(f'{results_dir}/{d}/{filename}')
names.append(d)
r.append(data)
except FileNotFoundError:
missing.append(d)
return (pd.concat(r, keys=names), missing)
class PickleTask(luigi.Task):
"""
Task class to save Pandas dataframe as pickle. To be inherited.
"""
def load(self):
return pd.read_pickle(self.input())
def dump(self, df):
self.output().makedirs()
df.to_pickle(self.output().path, compression=None)
class PreprocessMultivariate(luigi.Task):
"""
Task to turn ARFF file data into numpy format.
We use a separate task for this step because this can take a long
time for large datasets.
"""
dataset = luigi.Parameter()
def output(self):
fname = f"mult_{self.dataset}.npz"
return luigi.LocalTarget(PIPELINE_DIR/'prep'/fname)
def run(self):
X_train, y_train, X_test, y_test = load_mult_data(self.dataset)
out = self.output()
out.makedirs()
np.savez(out.path, X_train=X_train, y_train=y_train,
X_test=X_test, y_test=y_test)
class RunMultivariate(PickleTask):
"""
Run all benchmarks for multivariate UEA datasets.
Params:
dataset: (str) name of the dataset, e.g., ECG200
levels: list of truncation levels, e.g., [2,3,4]
sig_type: 'sig' or 'logsig', type of signature features to use
"""
dataset = luigi.Parameter()
levels = luigi.ListParameter()
sig_type = luigi.Parameter(default='sig')
def requires(self):
return PreprocessMultivariate(dataset=self.dataset)
def output(self):
levels_name = '_'.join(map(str, self.levels))
filename = f"{self.sig_type}_{levels_name}.pkl"
return luigi.LocalTarget(PIPELINE_DIR/'mult'/self.dataset/filename)
def run(self):
data = np.load(self.input().path, allow_pickle=True)
X_train = data['X_train']
y_train = data['y_train']
X_test = data['X_test']
y_test = data['y_test']
model = LogisticRegression
r = []
for level in self.levels:
if self.sig_type == 'sig':
m = SigModel(model, level=level)
elif self.sig_type == 'logsig':
m = LogSigModel(model, dim=X_train.shape[2], level=level)
# start timing
start = timeit.default_timer()
m.train(X_train, y_train)
elapsed = timeit.default_timer() - start
# end timing
r.append([m.score(X_test, y_test), elapsed])
result = pd.DataFrame(r, columns=['Score', 'Elapsed'], index=self.levels)
self.dump(result)
class RunUnivariate(PickleTask):
"""
Run all benchmarks for univariate UCR datasets.
Params:
dataset: (str) name of the dataset, e.g., ECG200
levels: (list) list of truncation levels, e.g., [2,3,4]
sig_type: (str) 'sig' or 'logsig', type of signature features to use
model_type: the name of the sklearn classification algorithm to use
"""
dataset = luigi.Parameter()
levels = luigi.ListParameter()
sig_type = luigi.Parameter(default='sig')
model_type = luigi.Parameter(default='LogisticRegression')
model_args = luigi.DictParameter(default={})
def output(self):
levels_name = '_'.join(map(str, self.levels))
filename = f"{self.sig_type}_{self.model_type}_{levels_name}.pkl"
return luigi.LocalTarget(PIPELINE_DIR/self.dataset/filename)
def run(self):
X_train, y_train, X_test, y_test = load_data(self.dataset)
model = eval(self.model_type) # this is unsafe
#model = LinearSVC
#model = LogisticRegression
#model = KNeighborsClassifier
scores = []
times = []
for t_name, transform in TRANSFORMS.items():
r = []
t = []
for level in self.levels:
if self.sig_type == 'sig':
m = SigModel(model, transform=transform, level=level, **self.model_args)
elif self.sig_type == 'logsig':
m = LogSigModel(model, dim=2, transform=transform, level=level, **self.model_args)
# start timing
start = timeit.default_timer()
m.train(X_train, y_train)
elapsed = timeit.default_timer() - start
# end timing
r.append(m.score(X_test, y_test))
t.append(elapsed)
scores.append(r)
times.append(t)
# create two dataframes containing scores and training time
scores = pd.DataFrame(scores, columns=self.levels,
index=[t for t in TRANSFORMS]).T
times = pd.DataFrame(times, columns=self.levels,
index=[f'{t}_elapsed' for t in TRANSFORMS]).T
self.dump(pd.concat([scores,times], axis=1))
class RunVotingEnsemble(PickleTask):
dataset = luigi.Parameter()
levels = luigi.ListParameter()
sig_type = luigi.Parameter(default='sig')
#clf_type = luigi.Parameter(default='LogisticRegression')
#clf_args = luigi.DictParameter(default={})
def output(self):
levels_name = '_'.join(map(str, self.levels))
filename = f"{self.sig_type}_flatcote_{levels_name}.pkl"
return luigi.LocalTarget(PIPELINE_DIR/self.dataset/filename)
def run(self):
X_train, y_train, X_test, y_test = load_data(self.dataset)
logit = LogisticRegression(random_state=42)
r = []
for level in self.levels:
m = classifiers.create_vote_clf(logit, level=level)
# start timing
start = timeit.default_timer()
m.fit(X_train, y_train)
elapsed = timeit.default_timer() - start
# end timing
r.append([m.score(X_test, y_test), elapsed])
self.dump(pd.DataFrame(r, columns=["Score", "Elapsed"], index=self.levels))
class RunFeatureUnion(PickleTask):
dataset = luigi.Parameter()
levels = luigi.ListParameter()
sig_type = luigi.Parameter(default='logsig')
def output(self):
levels_name = '_'.join(map(str, self.levels))
filename = f"{self.sig_type}_concat_{levels_name}.pkl"
return luigi.LocalTarget(PIPELINE_DIR/self.dataset/filename)
def run(self):
X_train, y_train, X_test, y_test = load_data(self.dataset)
logit = LogisticRegression(random_state=42)
r = []
for level in self.levels:
m = classifiers.create_concatenator(logit, sig_type=self.sig_type, level=level)
# start timing
start = timeit.default_timer()
m.fit(X_train, y_train)
elapsed = timeit.default_timer() - start
# end timing
r.append([m.score(X_test, y_test), elapsed])
self.dump(pd.DataFrame(r, columns=["Score", "Elapsed"], index=self.levels))
class RunLogit(PickleTask):
dataset = luigi.Parameter()
def output(self):
filename = "logit.pkl"
return luigi.LocalTarget(PIPELINE_DIR/self.dataset/filename)
def run(self):
X_train, y_train, X_test, y_test = load_data(self.dataset)
logit = LogisticRegression(random_state=42)
# start timing
start = timeit.default_timer()
logit.fit(X_train, y_train)
elapsed = timeit.default_timer() - start
score = logit.score(X_test, y_test)
self.dump(pd.DataFrame([
{"Score": score, "Elapsed": elapsed}
], index=[self.dataset]))
def main():
# UCR datasets
#MULT_SETS = [
# "ArticularyWordRecognition",
# "AtrialFibrillation", "BasicMotions", "CharacterTrajectories",
# "Cricket", "DuckDuckGeese", "EigenWorms", "Epilepsy",
# "ERing", "EthanolConcentration", "FaceDetection", "FingerMovements",
# "HandMovementDirection", "Handwriting", "Heartbeat",
# "InsectWingbeat", "JapaneseVowels", "Libras", "LSST", "MotorImagery",
# "NATOPS", "PEMS-SF", "PenDigits", "Phoneme", "Plots", "RacketSports",
# "SelfRegulationSCP1", "SelfRegulationSCP2", "SpokenArabicDigits",
# "StandWalkJump", "UWaveGestureLibrary",
#]
# small UEA datasets
MULT_SETS = [
"Libras",
"AtrialFibrillation",
"ERing",
"BasicMotions",
"RacketSports",
"PenDigits",
"Epilepsy",
"JapaneseVowels",
"StandWalkJump",
"FingerMovements",
"UWaveGestureLibrary",
"Handwriting",
"NATOPS",
]
#10216 HandMovementDirection
#11484 Plots
#15200 ArticularyWordRecognition
#20452 CharacterTrajectories
#26256 LSST
#34748 SelfRegulationSCP2
#34996 SelfRegulationSCP1
#42212 Cricket
#139304 SpokenArabicDigits
#264688 Phoneme
#303380 Heartbeat
#622688 DuckDuckGeese
#772016 FaceDetection
#827440 EigenWorms
#838112 PEMS-SF
#848340 EthanolConcentration
#1045712 MotorImagery
#1123400 InsectWingbeat
luigi.build(
[RunVotingEnsemble(dataset=dataset, levels=[2,3,4,5,6,7,8,9,10]) for dataset in DATASETS],
workers=1,
local_scheduler=True
)
#luigi.build(
# [RunLogit(dataset=dataset) for dataset in DATASETS],
# workers=4,
# local_scheduler=True
#)
# don't run multivariate for now, large memory usage
#luigi.build(
# [RunMultivariate(dataset=d, levels=[2,3,4]) for d in MULT_SETS],
# workers=1, local_scheduler=True
#)
if __name__ == "__main__":
main()