-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathext_gnn.py
81 lines (58 loc) · 2.34 KB
/
ext_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch.nn as nn
import torch
import dgl.function as fn
import torch.nn.functional as F
class ExtGNNLayer(nn.Module):
def __init__(self, args, act=None):
super(ExtGNNLayer, self).__init__()
self.args = args
self.act = act
# define in/out/loop transform layer
self.W_O = nn.Linear(args.rel_dim + args.ent_dim, args.ent_dim)
self.W_I = nn.Linear(args.rel_dim + args.ent_dim, args.ent_dim)
self.W_S = nn.Linear(args.ent_dim, args.ent_dim)
# define relation transform layer
self.W_R = nn.Linear(args.rel_dim, args.rel_dim)
def msg_func(self, edges):
comp_h = torch.cat((edges.data['h'], edges.src['h']), dim=-1)
non_inv_idx = (edges.data['inv'] == 0)
inv_idx = (edges.data['inv'] == 1)
msg = torch.zeros_like(edges.src['h'])
msg[non_inv_idx] = self.W_I(comp_h[non_inv_idx])
msg[inv_idx] = self.W_O(comp_h[inv_idx])
return {'msg': msg}
def apply_node_func(self, nodes):
h_new = self.W_S(nodes.data['h']) + nodes.data['h_agg']
if self.act is not None:
h_new = self.act(h_new)
return {'h': h_new}
def edge_update(self, rel_emb):
h_edge_new = self.W_R(rel_emb)
if self.act is not None:
h_edge_new = self.act(h_edge_new)
return h_edge_new
def forward(self, g, ent_emb, rel_emb):
with g.local_scope():
g.edata['h'] = rel_emb[g.edata['b_rel']]
g.ndata['h'] = ent_emb
g.update_all(self.msg_func, fn.mean('msg', 'h_agg'), self.apply_node_func)
rel_emb = self.edge_update(rel_emb)
ent_emb = g.ndata['h']
return ent_emb, rel_emb
class ExtGNN(nn.Module):
# knowledge extrapolation with GNN
def __init__(self, args):
super(ExtGNN, self).__init__()
self.args = args
self.layers = nn.ModuleList()
for idx in range(args.num_layers):
if idx == args.num_layers - 1:
self.layers.append(ExtGNNLayer(args, act=None))
else:
self.layers.append(ExtGNNLayer(args, act=F.relu))
def forward(self, g, **param):
rel_emb = param['rel_feat']
ent_emb = param['ent_feat']
for layer in self.layers:
ent_emb, rel_emb = layer(g, ent_emb, rel_emb)
return ent_emb, rel_emb