-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzMemPool.c.save-failed
652 lines (529 loc) · 24.4 KB
/
zMemPool.c.save-failed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/**
* zMemPool, dinamic memory pool with reusable freed memory segments (segment : pointed heap memory pool)
*
* Copyright (c) 2016 Zoe Daemon (Roy A.) All rights reserved.
* Use of this source code is governed by the MIT License that can be
* found in the LICENSE.md file.
*
* @brief Library for fast memory alocation coz this lib use memory pool that you can initialized at the first before
* your main logic program run, no need to malloc, calloc or realloc manualy that can slowdown your program, instead
* use this memory pool library for eficiency memory pointing without actual allocation.
*
* \todo: test :
* 1) Malloc, realloc and free in one single loop, 1000 iteration
* 2) Long string manipulation (test string algorithm, ex. porter stemming,
levenstein distance, natural language processing, etc)
* 3) Make some data structure from this mempool (ex. pointer of array,
pointer of pointer, multi pointer of pointer, etc)
* \todo: Apakah perlu mutex tuk [zMemPool]->current_end_pointer spaya gak corrupt
pointer memorynya ? apa semaphore ? coba read-write locks !!
tp kyknya bagus semaphore coz bisa transfer [zMemPool]->current_end_pointer
ke next thread biar lebih cepat prosesnya tanpa menunggu
current thread selesai memproses :)
atau bisa coba ini https://www.cs.cf.ac.uk/Dave/C/node31.html
sepertinya bagus pake "ret = pthread_cond_timedwait(&cv, &mp, &abstime);"
**/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <stdint.h>
#include "zMemPool.h"
/**
* @brief Tiap alokasi memori akan membentuk segment baru, #segment adalah struktur
* data khusus yg menyimpan penunjuk (pointer) ke lokasi memori yg sudah
* dialokasikan oleh fungsi zMemPool_init sebelum pemanggilan fungsi khusus
* alokasi memory pool (zMemPool_malloc, zMemPool_calloc dan zMemPool_realloc)
**/
struct segment_header{
// \todo: perlu cek tipe sistem x86_64 apa 32 bit system
void *current_start_pointer;
size_t reserved_size;
//DONE tambah "bool freed;" tuk menandai segment sedang free (sudah difree sebelumsnya)
unsigned short freed : 1;
struct segment *next_segment;
};
/**
@brief
freed adalah double linked list yg perlu menshorting listnya berdasarkan #segment_size.
struktur data ini untuk reuse mempool segement yg d free (zMemPool_free), tiap
object dari tipe data ini memrepresentasikan nilai segment header (indexnya aza cuy)
\todo: malloc biasa apa masukin ke mempool jg ? SOLUSI : tuk sementara malloc biasa za
*/
struct segment_header_freed{
void *left;
void *right;
//todo : harus explisit tipe data !!!
void *segment_address; ///< pointer ke [struct segment_header *] yg di free
//DONE tambah "bool freed;" tuk menandai segment sedang free (sudah difree sebelumsnya)
size_t segment_size;
};
/**
@brief
menyimpan struktur data utama, yaitu memory pool, segments akan grow atau
bertambah jika ada alokasi baru
\note: selisih address space antara zMemPool dengan start_pointer adalah
56,472 bytes (size_t, Windows)
\todo: lakukan test case _mempool->segments apabila membesar karena realloc
apa akan berpengaruh ke zMemPool lokasi ? sepertinya aman2 za
*/
struct zMemPool {
void *segments; ///< pointer ke [struct segment_header *] yg aktif (segment_header pertama
unsigned int n_segment;///< jumlah segment saat ini
void *start_pointer; ///< pointer ke memori awal alokasi malloc()
void *current_end_pointer; ///< pointer ke akhir memori dari segments[n-1] (segment yg baru set)
void *end_pointer;///< pointer ke memori akhir alokasi malloc()
zMemPool_alloc_size_t total_size_t;///< total memori yg ditampung zMemPool
size_t current_size;///< total memori yg ditampung zMemPool
int gap; //jarak per segment WARNING : bisa mempengaruhi segment lain
void *segment_header_start;
void *segment_header_end;
};
/**
@brief menggunakan alokasi global, hnya satu object ini yg digunakan untuk
keseluruhan program
\todo: cek ukuran memori ZMEMPOOL_MAX_SIZE harus kurang dari memori yg dimiliki
sistem, max 70%nya
\todo: harus thread safe, mutex vs semaphore
\todo: lakukan test pada major version, dimana _mempool adalah array of mempool
jd bisa menggunakan multiple zMemPool untuk ukuran yg besar :), untuk
mencegah bug:<17.54.13.05.16>
*/
struct zMemPool *_mempool;
/// ***** \todo: DECLARE PRIVATE FUNCTION HERE
/**
@brief inisialisasi zMemPool, menggunakan calloc supaya alokasi memori langsung
tersedia supaya pada proses zMemPool_malloc dan zMemPool_calloc tidak ada lagi
alokasi memori tambahan
@param size : ukuran maksimal memory pool
@param gap : ukuran jarak (dalam bytes) antar alokasi. Bentuk umum memori pool
yang diimplementasikan zMemPool adalah : header1-gap-datablock1-header2-gap-datablock2
@return NULL jika tidak ada error terjadi, static string jika ada kesalahan, misal
ALLOCATION_FAILED adalah string "~1: ALLOCATION FAILED", karena static JANGAN
di-free
*/
char *zMemPool_init(zMemPool_alloc_size_t size, int gap)
{
//absolute size (jika minus harus dipositifkan)
//if ( size < 0)
// size -= (size + 100);
if (gap < 0)
gap = -(gap);
if (size >= INT_MAX) {
size = (unsigned long long int)(INT_MAX - 100) & 0xfffffffc;
fprintf(stderr,"size : %ld\n", size);
}
long long int i_test_alloc = 0;
long long int max_test_alloc = 3000000000UL;
if ( (_mempool = (struct zMempool *)malloc( sizeof(struct zMemPool))) == NULL ) {
return ALLOCATION_FAILED;
}
/**
supaya gak lazy evaluation gunakan calloc(1, size) ?
http://stackoverflow.com/questions/4383059/malloc-memory-questions
*/
if ( (_mempool->start_pointer = calloc(1, size)) == NULL ) {
//insist to alloc :D
//handle if size can overflow to negative :( need binary Operation...
//...to delete negative flag !!!
while ( (_mempool->start_pointer = calloc(1, size) ) == NULL
&& i_test_alloc < max_test_alloc) {
i_test_alloc++;
//size = (size + i_test_alloc+3)& 0xfffffffc;
size = (unsigned long long int)(size + i_test_alloc + 3) & 0xfffffffc;
//fprintf(stderr,"size : %ld\n", size);
}
if (i_test_alloc >= max_test_alloc || _mempool->start_pointer == NULL) {
free(_mempool);
return ALLOCATION_FAILED;
}
}
fprintf(stderr,"actual size : %ld\n", size);
if (gap < 0)
gap = 1;
_mempool->start_pointer = memset(_mempool->start_pointer, '\0', size);
_mempool->segments = NULL;
_mempool->total_size_t = size;
_mempool->gap = gap;
_mempool->n_segment = 1;
_mempool->current_end_pointer = _mempool->start_pointer;
_mempool->end_pointer = _mempool->start_pointer + size;
_mempool->segment_header_start = NULL;
_mempool->segment_header_end = NULL;
_mempool->current_size = 0;
return NULL;
}
char *zMemPool_print_all_field(void)
{
fprintf(stdout,"_mempool : %p\n", _mempool);
fprintf(stdout,"_mempool->start_pointer : %p\n", _mempool->start_pointer);
fprintf(stdout,"_mempool->total_size_t : %ld\n", _mempool->total_size_t );
fprintf(stdout,"_mempool->gap (segment gap) : %d\n", _mempool->gap);
fprintf(stdout,"_mempool->n_segment : %d\n", _mempool->n_segment);
fprintf(stdout,"_mempool->current_end_pointer : %p\n", _mempool->current_end_pointer);
fprintf(stdout,"_mempool->end_pointer : %p\n", _mempool->end_pointer);
fprintf(stdout,"_mempool->current_size : %d\n", _mempool->current_size);
fprintf(stdout,"_mempool->segment_header_start : %p\n", _mempool->segment_header_start);
fprintf(stdout,"_mempool->segment_header_end : %p\n", _mempool->segment_header_end);
return NULL;
}
/**
\note: WANING if #limit exceed nonallocated memory it can causing
segmentation fault
*/
char *zMemPool_print_all_mem(int limit)
{
int i;
fprintf(stdout,"segments data : \n");
for (i=0; i < limit; i++ )
fprintf(stdout,"%c", ((char *)_mempool->start_pointer)[i]);
fprintf(stdout,"\n\n");
return NULL;
}
char *zMemPool_print_segment_header(void *start)
{
//TODO: blum dikurangin dengan SEGMENT_HEADER_GAP_TO_DATA
struct segment_header *real_start = (struct segment_header *)zMemPool_get_header(start);
fprintf(stdout,"segment_header : %p\n", real_start);
fprintf(stdout,"segment_header->current_start_pointer : %p\n", real_start->current_start_pointer);
fprintf(stdout,"segment_header->reserved_size : %d\n", real_start->reserved_size);
fprintf(stdout,"segment_header->freed : %d\n", real_start->freed);
fprintf(stdout,"segment_header->next_segment : %p\n", real_start->next_segment);
return NULL;
}
void *zMemPool_get_start_pointer(void)
{
return _mempool->start_pointer;
}
void *zMemPool_malloc(size_t size_of)
{
///\todo: realloc jika zMemPool-size exausted
void *end_pointer_reuse_or_not = NULL;
/// release node
//function helper
struct segment_header_freed *_append (
struct segment_header_freed **left_node,
struct segment_header_freed **right_node)
{
(*right_node)->right = *left_node;
(*left_node)->left = *right_node;
(*left_node)->right = *prev;
if (*prev != NULL)
(*prev)->left = *new_node;
}
/// \todo: reuse dari link list
void *_reuse(void)
{
int success = 0;
struct segment_header_freed *old_node_right = _mempool->segment_header_end;
struct segment_header_freed *old_node_left = _mempool->segment_header_start;
struct segment_header_freed *old_node_right_prev = old_node_right->right;
struct segment_header_freed *old_node_left_prev = old_node_right->left;
if (old_node_right->segment_size < size_of ||
old_node_left->segment_size > size_of)
return NULL;
while (old_node_right->segment_size >= old_node_left->segment_size) {
if (old_node_right->segment_size == size_of)
return old_node_right->segment_address;
else if (old_node_left->segment_size == size_of)
return old_node_left->segment_address;
else {
/*
ambil node di kanannya jika current old_right node
sudah kurang dari size_of tuk alokasi
*/
if (old_node_right->segment_size < size_of &&
old_node_right->right != NULL)
return old_node_right->right;
if (old_node_left->segment_size < size_of &&
old_node_left->left != NULL)
return old_node_right->left;
}
old_node_left = old_node_left->right;
old_node_right = old_node_right->left;
}
if (old_node_right->segment_size < size_of)
return old_node_right->segment_address;
else if (old_node_left->segment_size == size_of)
return old_node_left->segment_address;
return NULL;
}
if ( (end_pointer_reuse_or_not = _reuse()) == NULL )
end_pointer_reuse_or_not = _mempool->current_end_pointer;
struct segment_header *pointing = end_pointer_reuse_or_not;
int gap = _mempool->gap;// ((_mempool->n_segment - 1)==0? 0 : _mempool->gap);
//sediakan jarak untuk penempatan data
/// \bug:<17.54.13.05.16> segmentation fault coz memory out of boundary,...
// ...pdahal cuman cek aza tp dah error; (zMemPool_alloc_size_t)1000000000000000
if ((end_pointer_reuse_or_not + sizeof(struct segment_header) + gap)
>= _mempool->end_pointer) {
return ALLOCATION_FAILED;
}
pointing->current_start_pointer = end_pointer_reuse_or_not +
sizeof(struct segment_header) + gap;
//OLD
//pointing->current_end_pointer = _mempool->current_end_pointer + sizeof(struct segment_header) + size_of +
// ((_mempool->n_segment - 1)==0? 0 : _mempool->gap);
pointing->reserved_size = size_of;
pointing->freed = 0x0;//tandai segment blum pernah di-free
/*
kalkulasikan next address dengan menghitung address memori yg ditunjuk
pointing->current_start_pointer jumlahkan dengan ukuran struktur data
[strucct segment_header] dan gap to data dan ukuran data agar pointer
pindah ke next address penjumlahan dengan gap dilakukan di sini
*/
void *end = pointing->current_start_pointer + sizeof(struct segment_header) +
gap + size_of ;
//////////// NO SEGMENT REUSE
if (end_pointer_reuse_or_not == _mempool->current_end_pointer) {
//Fail to check
if ((char*)end >= (char*)_mempool->end_pointer) {
return ALLOCATION_FAILED;
}else
_mempool->current_end_pointer = end;
//next segment, bisa untuk iterator menelusuri pointer2/segment2 yg aktif
pointing->next_segment = _mempool->current_end_pointer;
_mempool->n_segment++;
_mempool->current_size += sizeof(struct segment_header) + gap + size_of ;
}
return pointing->current_start_pointer;
}
//gunakan operasi _NumOfElements * size_t _SizeOfElements
void *__cdecl zMemPool_calloc(size_t num_of_elm,size_t size_of_elm)
{
//if _NumOfElements == 0 ??? look some linux man page :D
return zMemPool_malloc( num_of_elm * size_of_elm);
}
//GROW: free segment lama dan reservasi blog memory lebih besar d akhir (zMemPool*)->end_pointer
//SHRINK: free bagian segment lama yg berkurang dan segment tetap pada blog memory yg sama
void *__cdecl zMemPool_realloc(void *_Memory,size_t _NewSize);
//gunakan operasi _NumOfElements * size_t _SizeOfElements
//TODO: private ?
void *zMemPool_get_header(void *ptr)
{
return (struct segment_header *) (ptr - sizeof(struct segment_header) - _mempool->gap);
}
/**
@brief cari alamat pointer data_ptr dengan ukuran data size_of_elm apakah
menunjuk ke salah satu segment yang ada di dalam memory pool zMemPool yang
teralokasi sebelumnya
@param data_ptr pointer yang ingin dicek
@param size_of_elm ukuran data yg disimpan di pointer yg ingin dibandingkan
@param retval 1 berarti alamat pointer sama, 2 berarti alamat pointer sama dan data di dalamnya sama
@return nilai alamat yang ditemukan, jika tidak ditemukan akan mengembalikan nilai NULL
*/
void *zMemPool_is_allocated(const void *data_ptr, size_t size_of_elm, int *retval)
{
struct segment_header *iterator = (struct segment_header *) _mempool->start_pointer;
struct segment_header *iterator_next = (struct segment_header *) iterator->next_segment;
struct segment_header *curr_end_pointer = (struct segment_header *) _mempool->current_end_pointer;
//fprintf(stderr,"\ndata_ptr: %p (%d)", data_ptr, size_of_elm);
//iterasi dari awal start pointer
while (iterator < curr_end_pointer) {
//fprintf(stderr,"\ncurrent_data_ptr: %p", iterator->current_start_pointer);
if (iterator->current_start_pointer == data_ptr) {
if (memcmp(iterator->current_start_pointer, data_ptr, size_of_elm) == 0) {
if (retval != NULL)
*retval = 2;
return iterator->current_start_pointer;
}
if (retval != NULL)
*retval = 1;
return iterator->current_start_pointer;
}
//zMemPool_print_segment_header(iterator);
//goto next segment
iterator = iterator_next;
iterator_next = (struct segment_header *)iterator->next_segment;
}
return NULL;
}
int zMemPool_is_freed(void *ptr)
{
if (ptr == NULL)
return INVALID_MEMORY_ADDRESS_INT;
struct segment_header *segment_header = (struct segment_header *) zMemPool_get_header(ptr);
return segment_header->freed;
}
void *zMemPool_destroy(void)
{
return NULL;
}
/**
@brief cetak segment yang sudah di free sebelumnya
@param data_ptr pointer yang ingin dicek
@param size_of_elm ukuran data yg disimpan di pointer yg ingin dibandingkan
@param retval 1 berarti alamat pointer sama, 2 berarti alamat pointer sama dan data di dalamnya sama
@return nilai alamat yang ditemukan, jika tidak ditemukan akan mengembalikan nilai NULL
\todo: buat pake callback function biar dinamis user bisa print dengan caranya sendiri
tapi jika callback function sama dengan NULL panggil fungsi default untuk mencetaknya
*/
char *zMemPool_print_free_segments(void)
{
if (_mempool->segment_header_start == NULL) {
return NULL_POINTER;
}
struct segment_header_freed *iterator = (struct segment_header_freed *) _mempool->segment_header_start;
struct segment_header_freed *iterator_next = iterator->right;
fprintf(stderr,"\nFree Nodes : \n");
//iterasi dari awal start pointer
while (iterator != NULL) {
//print some pointer's pointed address
fprintf(stderr,"\n(segment_header_freed *): %p", iterator);
fprintf(stderr,"\n(segment_header_freed *)->segment_size: %d", iterator->segment_size);
fprintf(stderr,"\n(segment_header_freed *)->segment_address : %p\n",
((struct segment_header *)iterator->segment_address)->current_start_pointer);
//print segments
zMemPool_print_segment_header(((struct segment_header *)iterator->segment_address)->current_start_pointer);
//goto next segment
iterator = iterator_next;
if (iterator != NULL)
iterator_next = iterator->right;
}
return NULL;
}
/////////////// zMemPool_free implementation
/*
cara 1 :
hapus data pd segment yg d free, kosongkan pointer dan tandai sedang kosong,
slot kosong benar2 dihapus dan realloc zMemPool increment kan sesuai dengan size
segment yg d free. yakin realloc nambah alamat baru di akhir gaknya mengubah
alamat pointer lama ????
cara 2 :
buat index hash table untuk segment2 yg sudah d free, jika ada penambahan segment
baru tinggal akses hash table dan copy data k segment tsb tp kendalanya klo size
segment baru lebih kecil dr data yg d alokasikan gmana solusinya ??? apa ada
fungsi tuk mengkaitkan antar alamat memmory ???
cara 3 :
buat index link list untuk segment2 yg sudah d free, jika ada penambahan segment
baru tinggal akses hash table dan copy data k segment tsbasalkan ukuran memori
yg d inginkan sama ato kurang dr yg d free seeblumnya, jika lebih dari itu buat segment baru
di current_end_pointer :D
NOTE: hapus link list head jika proses berhasil merecycle segment yg d hapus
struct LinkListFreedMem {
void *ptr;
unsigned int reserved_size;//fixed gak bisa diubah lg;
void *next;//node list belakang
void *prev;//node list didepan
}
NOTE : apa perlu thread terpisah tuk mengurutkan link list ? ato tambah operasi
link list prepend append yg terurut, perlu (TODO) test case zMemPool_malloc
dan zMemPool_free bersamaan d dalam loop, jika pake threads apakah aman d dlm loop ?
\todo : reusable node, gak perlu allocate node jika masih ada node kosong ada
*/
void *__cdecl zMemPool_free(void *memory_ptr)
{
struct segment_header *segment_header = (struct segment_header *) zMemPool_get_header(memory_ptr);
struct segment_header_freed *new_node;
if (memory_ptr == NULL)
return INVALID_MEMORY_ADDRESS;
if (segment_header == NULL)
return INVALID_MEMORY_ADDRESS;
if ( (new_node = malloc(sizeof(struct segment_header_freed))) == NULL )
return ALLOCATION_FAILED;
//tandai segment SEDANG di-free
segment_header->freed = 0x1;
//hapus konten lama
memset(segment_header->current_start_pointer, '\0', segment_header->reserved_size);
//simpan informasi segment
new_node->segment_address = segment_header;
new_node->segment_size = segment_header->reserved_size;
if ( _mempool->segment_header_start == NULL &&
_mempool->segment_header_end == NULL) {
_mempool->segment_header_start = new_node;
_mempool->segment_header_end = new_node;
new_node->left = NULL;
new_node->right = NULL;
}else {
/*
DIRECT ADD TO END (append)
struct segment_header_freed *old_node = _mempool->segment_header_end;
old_node->right = new_node;
new_node->left = old_node;
new_node->right = NULL;
_mempool->segment_header_end = new_node;
*/
/*
SORTED : start from Start and End (dual iterator)
todo : need mutex
*/
//function helper
void _append (struct segment_header_freed **new_node,
struct segment_header_freed **old_node,
struct segment_header_freed **prev)
{
(*old_node)->right = *new_node;
(*new_node)->left = *old_node;
(*new_node)->right = *prev;
if (*prev != NULL)
(*prev)->left = *new_node;
}
void _prepend (struct segment_header_freed **new_node,
struct segment_header_freed **old_node,
struct segment_header_freed **prev)
{
(*old_node)->left = *new_node;
(*new_node)->right = *old_node;
(*new_node)->left = *prev;
if (*prev != NULL)
(*prev)->right = *new_node;
}
int success = 0;
struct segment_header_freed *old_node_right = _mempool->segment_header_end;
struct segment_header_freed *old_node_left = _mempool->segment_header_start;
struct segment_header_freed *old_node_right_prev = old_node_right->right;
struct segment_header_freed *old_node_left_prev = old_node_right->left;
//TODO : pass by reference tuk mencegah duplikasi statement panjang di bawah ini
//int do_node_manipulation (void)
//{
//}
while (old_node_right->segment_size >= old_node_left->segment_size) {
if (new_node->segment_size >= old_node_right->segment_size) {
//DO APPEND
_append (&new_node, &old_node_right, &old_node_right_prev);
if (old_node_right == _mempool->segment_header_end)
_mempool->segment_header_end = new_node;//pointing to new end
success = 1;
break;
}else {
old_node_right_prev = old_node_right;
old_node_right = old_node_right->left; //move to the left
}
if (new_node->segment_size <= old_node_left->segment_size) {
//DO PREPEND
_prepend (&new_node, &old_node_left, &old_node_left_prev);
if (old_node_left == _mempool->segment_header_start)
_mempool->segment_header_start = new_node;//pointing to new end
success = 1;
break;
}else {
old_node_left_prev = old_node_left;
old_node_left = old_node_left->right; //move to the right
}
}
/**
\todo:test bagian ini cek node-node keluarannya
*/
if (success != 1) {
if (new_node->segment_size >= old_node_right->segment_size) {
//DO APPEND
_append (&new_node, &old_node_right, &old_node_right_prev);
if (old_node_right == _mempool->segment_header_end)
_mempool->segment_header_end = new_node;//pointing to new end
}else {
old_node_right_prev = old_node_right;
old_node_right = old_node_right->left; //move to the left
}
if (new_node->segment_size <= old_node_left->segment_size) {
//DO PREPEND
_prepend (&new_node, &old_node_left, &old_node_left_prev);
if (old_node_left == _mempool->segment_header_start)
_mempool->segment_header_start = new_node;//pointing to new end
}else {
old_node_left_prev = old_node_left;
old_node_left = old_node_left->right; //move to the right
}
}
}
return NULL;
}