-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
495 lines (394 loc) · 18.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import numpy as np
import os, time, torch, tqdm
import scipy as sci
from third_party.rloss import Evaluator, TensorboardSummary, Saver, LR_Scheduler
from third_party.rloss import SegmentationLosses, make_data_loader, DeNorm
from third_party.rloss import DataParallelWithCallback, visualization
from third_party.sp_fcn import compute_semantic_pos_loss, init_spixel_grid, get_spixel_image
from joint_learning.spnet import SPNet, customized_sp_edges
from joint_learning.options import set_config, set_seed, set_config_seg, set_config_sp
if int(sci.__version__.split('.')[0]) == 1:
from imageio import imwrite as imsave
else:
from scipy.misc import imsave as imsave
class Trainer(object):
def __init__(self, args):
self.args = args
# Define Saver
self.saver = Saver(args)
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
self.denorm = DeNorm(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
# Define Dataloader
kwargs = {'num_workers': args.workers, 'pin_memory': True}
self.train_loader, self.val_loader, self.test_loader, self.nclass = \
make_data_loader(args, **kwargs)
# Define Criterion
weight = None
args.reduction_mode = 'sum'
self.seg_criterion = SegmentationLosses(weight=weight, reduction_mode=args.reduction_mode, cuda=False,
batch_average=False).build_loss(mode=args.loss_type)
self.sp_criterion = compute_semantic_pos_loss
# Define network
args.enable_cuda = True
args.n_classes = self.nclass
model = SPNet(args,
seg_loss_fn=self.seg_criterion,
sp_loss_fn=self.sp_criterion,
denorm=self.denorm)
# Define Optimizer
if args.optimizer in {'SGD', 'Adam'}:
if args.ft:
train_params = [{'params': model.get_1x_lr_params(), 'lr': args.lr},
{'params': model.get_10x_lr_params(), 'lr': args.lr}]
else:
train_params = [{'params': model.get_1x_lr_params(), 'lr': args.lr},
{'params': model.get_10x_lr_params(), 'lr': args.lr * 10}]
if args.sp_lr is not None:
train_params += [{'params': model.get_sp_lr_params(), 'lr': args.sp_lr}]
if args.ti_lr is not None:
train_params += [{'params': model.get_ti_lr_params(), 'lr': args.ti_lr}]
if args.optimizer == 'SGD':
optimizer = torch.optim.SGD(train_params, momentum=args.momentum, nesterov=args.nesterov)
else:
optimizer = torch.optim.Adam(train_params, weight_decay=args.weight_decay)
else:
assert False
self.model, self.optimizer = model, optimizer
# Define Evaluator
self.evaluator = Evaluator(self.nclass)
self.evaluator_single = Evaluator(self.nclass)
# Define LR scheduler
if args.lr_scheduler in {'poly', 'step', 'cos'}:
self.scheduler = LR_Scheduler(
args.lr_scheduler, [v['lr'] for v in train_params], args.epochs,
len(self.train_loader), enable_ft=args.ft, warmup_epochs=args.warmup_epochs)
else:
self.scheduler = None
self.lr_scheduler = None
# Resuming checkpoint
self.best_pred = 0.0
self.run_resume()
# Using CUDA
if self.args.cuda:
if self.args.gpu_number > 1:
self.model = DataParallelWithCallback(self.model, device_ids=self.args.gpu_ids)
self.model = self.model.cuda()
# Clear start epoch if fine-tuning
if args.ft:
args.start_epoch = 0
def run_resume(self):
if self.args.deeplab_resume:
assert os.path.exists(self.args.deeplab_resume)
checkpoint = torch.load(self.args.deeplab_resume)
state_dict = checkpoint['state_dict']
state_dict = {k.replace('deeplab.', ''): v for k, v in state_dict.items() if k.find('deeplab.') > -1}
if self.args.n_classes != state_dict['decoder.last_conv.8.weight'].shape[0]:
model_dict = self.model.deeplab.state_dict()
state_dict = {k: v for k, v in state_dict.items() if k.find('decoder.last_conv.8') <= -1}
model_dict.update(state_dict)
self.model.deeplab.load_state_dict(model_dict)
else:
self.model.deeplab.load_state_dict(state_dict)
if self.args.coco_resume:
assert os.path.exists(self.args.coco_resume)
checkpoint = torch.load(self.args.coco_resume)
state_dict = checkpoint['state_dict']
if self.args.n_classes != state_dict['deeplab.decoder.last_conv.8.weight'].shape[0]:
model_dict = self.model.state_dict()
state_dict = {k: v for k, v in state_dict.items() if not (k.find('deeplab.decoder.last_conv.8') > -1)}
model_dict.update(state_dict)
self.model.load_state_dict(model_dict)
else:
self.model.load_state_dict(state_dict)
if self.args.sp_resume:
assert os.path.exists(self.args.sp_resume)
state_dict = torch.load(self.args.sp_resume)['state_dict']
self.model.sp_net.load_state_dict(state_dict)
if self.args.resume:
assert os.path.exists(self.args.resume)
checkpoint = torch.load(self.args.resume)
state_dict = checkpoint['state_dict']
self.args.start_epoch = checkpoint['epoch']
self.model.load_state_dict(state_dict)
print("Loaded checkpoint '{}' (epoch {})".format(self.args.resume, checkpoint['epoch']))
if not self.args.enable_test:
if not self.args.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
if 'optimizer' in checkpoint:
param_groups = checkpoint['optimizer']['param_groups']
for idx, param_group in enumerate(param_groups):
print('Finetuned group {}, lr: {}'.format(idx, param_group['lr']))
def training(self, epoch, plot_count=0):
train_loss = 0.0
train_baseloss = 0.0
train_slicloss = 0.0
duration = 0
if hasattr(self.model, 'module'):
self.model.module.deeplab.train()
if self.args.slic_loss > 0:
self.model.module.sp_net.train()
else:
self.model.module.sp_net.eval()
else:
self.model.deeplab.train()
if self.args.slic_loss > 0:
self.model.sp_net.train()
else:
self.model.sp_net.eval()
# Training unary-net but fix batchnorm running_mean and running_var
# using pretrained models (e.g., resnet-101)
if self.args.ft or self.args.freeze_bn:
if hasattr(self.model, 'module'):
self.model.module.freezebn_modules([self.model.module.deeplab])
else:
self.model.freezebn_modules([self.model.deeplab])
num_img_tr = len(self.train_loader)
print('LR adjusted', [group['lr'] for group in self.optimizer.param_groups])
tbar = tqdm.tqdm(self.train_loader)
spixelID, XY_feat = init_spixel_grid(self.args, b_train=True, batch_size=self.args.batch_size)
for i, sample in enumerate(tbar):
image = sample['image']
target = sample['label'] if ('label' in sample) else None
cropping, valid_area = None, None
if target is not None:
cropping = (target != 254).float()
target[target == 254] = 255
valid_area = (target != 255).float() # use for superpixel to exclude the effect of ambiguous edges in GT and padding areas
if self.args.cuda:
image = image.cuda()
target = target.cuda() if (target is not None) else None
valid_area = valid_area.cuda() if (valid_area is not None) else None
cropping = cropping.cuda() if (cropping is not None) else None
time_start = time.time()
if self.scheduler:
self.scheduler(self.optimizer, i, epoch, self.best_pred)
actual_bz = image.shape[0]
if actual_bz != self.args.batch_size:
spixelID, XY_feat = init_spixel_grid(self.args, b_train=True, batch_size=actual_bz)
self.optimizer.zero_grad()
outputs = self.model(image, valid_area=valid_area, cropping=cropping, target=target, XY_feat=XY_feat)
base_loss = outputs['ce_loss'].sum() / outputs['ce_denom'].sum()
base_loss = base_loss / actual_bz
slic_loss = outputs['sem_loss'].sum() / outputs['sem_denom'].sum()
slic_loss = self.args.slic_loss * (slic_loss + outputs['pos_loss'].sum() / outputs['pos_denom'].sum())
loss = base_loss + slic_loss
train_baseloss += base_loss.detach().item()
train_slicloss += slic_loss.detach().item()
duration += time.time() - time_start
loss.backward()
self.optimizer.step()
loss_scale = loss.item()
train_loss += loss_scale
tbar.set_description(
'Epoch:%d, train loss:%.3f = Base:%.3f + Slic:%.3f'
% (epoch,
train_loss / (i + 1),
train_baseloss / (i + 1),
train_slicloss / (i + 1)))
self.writer.add_scalar('train/total_loss_iter', loss_scale, i + num_img_tr * epoch)
self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch)
print('\n[Train epoch {:d}] Loss: {:.4f}, time: {:.4f}s'.format(epoch, train_loss, duration))
return plot_count
def validation(self, epoch):
self.model.eval()
self.evaluator.reset()
test_loss = 0.0
tbar = tqdm.tqdm(self.val_loader, desc='\r')
for i, sample in enumerate(tbar):
image, image_name = sample['image'], sample['name']
target = sample['label'] if ('label' in sample) else None
valid_area, cropping = None, None
if target is not None:
cropping = (target != 254).float()
target[target == 254] = 255
valid_area = (target != 255).float()
if self.args.cuda:
image = image.cuda()
target = target.cuda() if (target is not None) else None
valid_area = valid_area.cuda() if (valid_area is not None) else None
cropping = cropping.cuda() if (cropping is not None) else None
with torch.no_grad():
outputs = self.model(image, valid_area=valid_area, cropping=cropping, target=target)
scores, org_scores = outputs['scores'], outputs['org_scores']
if target is not None:
loss = outputs['ce_loss'].sum() / outputs['ce_denom'].sum()
loss = loss / image.shape[0]
target = target.cpu().numpy()
else:
loss = 0
pred = np.argmax(scores.data.cpu().numpy(), axis=1)
org_pred = np.argmax(org_scores.data.cpu().numpy(), axis=1)
test_loss += loss
tbar.set_description('Epoch: %d, valid loss: %.3f.' % (epoch, test_loss / (i + 1)))
if self.args.enable_sp:
spixel_map = outputs['spixel_map'].squeeze(1)
denormalized_image = self.denorm(sample['image']) / 255
spixel_viz, spixel_label_map = get_spixel_image(denormalized_image.cpu().clamp(0, 1)[0],
spixel_map[0],
n_spixels=len(spixel_map.unique()),
b_enforce_connect=True)
if self.args.enable_adjust_val:
image_h, image_w = sample['size'][0].item(), sample['size'][1].item()
target = target[:, :image_h, :image_w] if (target is not None) else None
pred = pred[:, :image_h, :image_w]
org_pred = org_pred[:, :image_h, :image_w]
denormalized_image = denormalized_image[:, :, :image_h, :image_w] if self.args.enable_sp else None
if self.args.enable_sp:
spixel_viz = spixel_viz[:, :image_h, :image_w]
self.evaluator.add_batch(target, pred) if (target is not None) else None
if (self.args.val_batch_size == 1) and self.args.enable_save_png \
and (self.args.dataset == 'pascal'):
save_dir = 'results/VOC2012/Segmentation'
if self.saver.experiment_dir.find('coco') > -1:
save_dir += '/comp6' # training on any datasets
else:
save_dir += '/comp5' # training only on VOC trainset
save_dir += '_val_cls'
save_path = os.path.join(self.saver.experiment_dir, save_dir)
os.makedirs(save_path) if (not os.path.exists(save_path)) else None
# Grey
save_image_name = os.path.join(save_path, '', image_name[0] + '.png')
imsave(save_image_name, pred.transpose(1, 2, 0).astype(np.uint8))
# Add batch sample into evaluator
mIoU_single = []
if target is not None:
for idx in range(image.size(0)):
self.evaluator_single.reset()
self.evaluator_single.add_batch(target[idx], pred[idx])
mIoU_single_per = self.evaluator_single.Mean_Intersection_over_Union()
mIoU_single.append(mIoU_single_per)
if self.args.enable_save_val and \
((i <= 5) or (self.args.enable_test and self.args.val_batch_size == 1)):
output_directory = os.path.join(self.saver.experiment_dir, 'epoch{}'.format(epoch))
if not os.path.exists(output_directory):
os.mkdir(output_directory)
n_images = pred.shape[0]
denormalized_image = self.denorm(image) / 255
for idx in range(n_images):
image_name_per = image_name[idx]
image_h, image_w = sample['size'][0][idx].item(), sample['size'][1][idx].item()
if self.args.enable_adjust_val:
image = image[:, :, :image_h, :image_w]
if self.args.enable_sp:
sp_map_new, spixel_viz = customized_sp_edges(denormalized_image.cpu().clamp(0, 1)[idx],
spixel_map[idx])
spixel_viz = spixel_viz.cpu().numpy()
if self.args.enable_adjust_val:
spixel_viz = spixel_viz[:, :image_h, :image_w]
else:
spixel_viz = None
visualization(image[idx],
pred[idx],
target=target[idx] if (target is not None) else None,
unary_pred=org_pred[idx],
sp_map=spixel_viz,
image_name=image_name_per,
accuracy=mIoU_single[idx] if (target is not None) else 0,
save_dir=output_directory,
enable_save_all=self.args.enable_save_all)
# Fast test during the training
Acc = self.evaluator.Pixel_Accuracy()
Acc_class = self.evaluator.Pixel_Accuracy_Class()
mIoU = self.evaluator.Mean_Intersection_over_Union()
FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union()
self.writer.add_scalar('val/total_loss_epoch', test_loss, epoch)
self.writer.add_scalar('val/mIoU', mIoU, epoch)
self.writer.add_scalar('val/Acc', Acc, epoch)
self.writer.add_scalar('val/Acc_class', Acc_class, epoch)
self.writer.add_scalar('val/fwIoU', FWIoU, epoch)
if mIoU > self.best_pred:
is_best = True
self.best_pred = mIoU
self.best_epoch = epoch + 1
state_dict_save = self.model.state_dict() \
if (self.args.gpu_number == 1) else self.model.module.state_dict()
self.saver.save_checkpoint({
'epoch': self.best_epoch,
'state_dict': state_dict_save,
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
'current_pred': mIoU},
is_best, filename='ckpt_{}.pth.tar'.format(str(epoch + 1)))
print("\n[Val epoch {:d}] Loss: {:.6f}, Acc: {:.6f}, Acc_class: {:.6f}, " \
"mIoU: {:.6f} (best: {:.6f} at {}th), fwIoU: {:.6f}" \
.format(epoch, test_loss, Acc, Acc_class, mIoU,
self.best_pred, self.best_epoch, FWIoU))
def main():
args = set_config()
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = True
# Set seed
set_seed(args.seed)
# Check multiple GPUs and sync bnorm
args.cuda = (not args.no_cuda) and torch.cuda.is_available()
if args.cuda:
args.sync_bn = (args.gpu_number > 1)
if args.enable_test:
if not args.val_batch_size:
args.val_batch_size = 1
else:
print('Set val_batch_size:', args.val_batch_size)
else:
if not args.val_batch_size:
args.val_batch_size = args.batch_size
if args.enable_adjust_val and (args.val_batch_size != 1):
assert args.val_batch_size == 1
print('Enable adjust val size while val batch size is {} (must be 1).'.format(args.val_batch_size))
# For unary net, set True, Important!!!
args.freeze_bn = True if (args.gpu_number > 1) else False
args.batch_size = 1 if args.enable_test else args.batch_size
if args.output_directory:
if args.enable_test:
args.output_directory += '_full'
else:
args.output_directory += '_crop{}'.format(args.crop_size)
if not os.path.exists(args.output_directory):
os.makedirs(args.output_directory)
# Default settings for epochs, batch_size and LR
if not args.epochs:
epoches = {'coco': 40, 'pascal': 60}
args.epochs = epoches[args.dataset.lower()]
if not args.batch_size:
args.batch_size = 4 * args.gpu_number
if (args.lr is None) or (args.lr == 0):
lrs = {'coco': 0.1, 'pascal': 0.007}
args.lr = lrs[args.dataset.lower()] / (4 * args.gpu_number) * args.batch_size
if args.sp_lr is None:
args.sp_lr = 0.1 * args.lr
if not args.checkname:
args.checkname = 'deeplab-' + str(args.backbone) + '-test'
args = set_config_seg(args)
args = set_config_sp(args)
print(args)
trainer = Trainer(args)
print('Starting Epoch: {}, Total Epoch: {}'
.format(trainer.args.start_epoch, trainer.args.epochs))
if not args.enable_test:
plot_count = 0
if trainer.args.start_epoch < trainer.args.epochs:
for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
set_seed(epoch)
plot_count = trainer.training(epoch, plot_count=plot_count)
if not trainer.args.no_val:
trainer.validation(epoch)
elif trainer.args.start_epoch == trainer.args.epochs:
if not trainer.args.no_val:
trainer.validation(trainer.args.start_epoch)
else:
assert False
else:
if args.resume and os.path.isdir(args.resume):
model_root = args.resume
for idx in range(args.epochs):
args.resume = os.path.join(model_root, 'ckpt_{}.pth.tar'.format(idx + 1))
trainer.run_resume()
trainer.validation(trainer.args.start_epoch)
else:
trainer.validation(trainer.args.start_epoch)
trainer.writer.close()
if __name__ == "__main__":
main()