-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetuning_torchvision_models_tutorial.py
473 lines (400 loc) · 18.6 KB
/
finetuning_torchvision_models_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
"""
Finetuning Torchvision Models
=============================
**Author:** `Nathan Inkawhich <https://github.com/inkawhich>`__
"""
######################################################################
# In this tutorial we will take a deeper look at how to finetune and
# feature extract the `torchvision
# models <https://pytorch.org/docs/stable/torchvision/models.html>`__, all
# of which have been pretrained on the 1000-class Imagenet dataset. This
# tutorial will give an indepth look at how to work with several modern
# CNN architectures, and will build an intuition for finetuning any
# PyTorch model. Since each model architecture is different, there is no
# boilerplate finetuning code that will work in all scenarios. Rather, the
# researcher must look at the existing architecture and make custom
# adjustments for each model.
#
# In this document we will perform two types of transfer learning:
# finetuning and feature extraction. In **finetuning**, we start with a
# pretrained model and update *all* of the model’s parameters for our new
# task, in essence retraining the whole model. In **feature extraction**,
# we start with a pretrained model and only update the final layer weights
# from which we derive predictions. It is called feature extraction
# because we use the pretrained CNN as a fixed feature-extractor, and only
# change the output layer. For more technical information about transfer
# learning see `here <http://cs231n.github.io/transfer-learning/>`__ and
# `here <http://ruder.io/transfer-learning/>`__.
#
# In general both transfer learning methods follow the same few steps:
#
# - Initialize the pretrained model
# - Reshape the final layer(s) to have the same number of outputs as the
# number of classes in the new dataset
# - Define for the optimization algorithm which parameters we want to
# update during training
# - Run the training step
#
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)
######################################################################
# Inputs
# ------
#
# Here are all of the parameters to change for the run. We will use the
# *hymenoptera_data* dataset which can be downloaded
# `here <https://download.pytorch.org/tutorial/hymenoptera_data.zip>`__.
# This dataset contains two classes, **bees** and **ants**, and is
# structured such that we can use the
# `ImageFolder <https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder>`__
# dataset, rather than writing our own custom dataset. Download the data
# and set the ``data_dir`` input to the root directory of the dataset. The
# ``model_name`` input is the name of the model you wish to use and must
# be selected from this list:
#
# ::
#
# [resnet, alexnet, vgg, squeezenet, densenet, inception]
#
# The other inputs are as follows: ``num_classes`` is the number of
# classes in the dataset, ``batch_size`` is the batch size used for
# training and may be adjusted according to the capability of your
# machine, ``num_epochs`` is the number of training epochs we want to run,
# and ``feature_extract`` is a boolean that defines if we are finetuning
# or feature extracting. If ``feature_extract = False``, the model is
# finetuned and all model parameters are updated. If
# ``feature_extract = True``, only the last layer parameters are updated,
# the others remain fixed.
#
# Top level data directory. Here we assume the format of the directory conforms
# to the ImageFolder structure
data_dir = "/home/zxw/datasets/hymenoptera_data/"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "alexnet"
# Number of classes in the dataset
num_classes = 2
# Batch size for training (change depending on how much memory you have)
batch_size = 8
# Number of epochs to train for
num_epochs = 15
# Flag for feature extracting. When False, we finetune the whole model,
# when True we only update the reshaped layer params
feature_extract = True
######################################################################
# Helper Functions
# ----------------
#
# Before we write the code for adjusting the models, lets define a few
# helper functions.
#
# Model Training and Validation Code
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The ``train_model`` function handles the training and validation of a
# given model. As input, it takes a PyTorch model, a dictionary of
# dataloaders, a loss function, an optimizer, a specified number of epochs
# to train and validate for, and a boolean flag for when the model is an
# Inception model. The *is_inception* flag is used to accomodate the
# *Inception v3* model, as that architecture uses an auxiliary output and
# the overall model loss respects both the auxiliary output and the final
# output, as described
# `here <https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958>`__.
# The function trains for the specified number of epochs and after each
# epoch runs a full validation step. It also keeps track of the best
# performing model (in terms of validation accuracy), and at the end of
# training returns the best performing model. After each epoch, the
# training and validation accuracies are printed.
#
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False):
since = time.time()
val_acc_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
# Special case for inception because in training it has an auxiliary output. In train
# mode we calculate the loss by summing the final output and the auxiliary output
# but in testing we only consider the final output.
if is_inception and phase == 'train':
# From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4*loss2
else:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
if phase == 'val':
val_acc_history.append(epoch_acc)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history
######################################################################
# Set Model Parameters’ .requires_grad attribute
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# This helper function sets the ``.requires_grad`` attribute of the
# parameters in the model to False when we are feature extracting. By
# default, when we load a pretrained model all of the parameters have
# ``.requires_grad=True``, which is fine if we are training from scratch
# or finetuning. However, if we are feature extracting and only want to
# compute gradients for the newly initialized layer then we want all of
# the other parameters to not require gradients. This will make more sense
# later.
#
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
# Initialize these variables which will be set in this if statement. Each of these
# variables is model specific.
model_ft = None
input_size = 0
if model_name == "resnet":
""" Resnet18
"""
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "alexnet":
""" Alexnet
"""
model_ft = models.alexnet(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224
elif model_name == "vgg":
""" VGG11_bn
"""
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224
elif model_name == "squeezenet":
""" Squeezenet
"""
model_ft = models.squeezenet1_0(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
model_ft.num_classes = num_classes
input_size = 224
elif model_name == "densenet":
""" Densenet
"""
model_ft = models.densenet121(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "inception":
""" Inception v3
Be careful, expects (299,299) sized images and has auxiliary output
"""
model_ft = models.inception_v3(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
# Handle the auxilary net
num_ftrs = model_ft.AuxLogits.fc.in_features
model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
# Handle the primary net
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs,num_classes)
input_size = 299
else:
print("Invalid model name, exiting...")
exit()
return model_ft, input_size
# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
# Print the model we just instantiated
print(model_ft)
######################################################################
# Load Data
# ---------
#
# Now that we know what the input size must be, we can initialize the data
# transforms, image datasets, and the dataloaders. Notice, the models were
# pretrained with the hard-coded normalization values, as described
# `here <https://pytorch.org/docs/master/torchvision/models.html>`__.
#
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
print("Initializing Datasets and Dataloaders...")
# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
######################################################################
# Create the Optimizer
# --------------------
#
# Now that the model structure is correct, the final step for finetuning
# and feature extracting is to create an optimizer that only updates the
# desired parameters. Recall that after loading the pretrained model, but
# before reshaping, if ``feature_extract=True`` we manually set all of the
# parameter’s ``.requires_grad`` attributes to False. Then the
# reinitialized layer’s parameters have ``.requires_grad=True`` by
# default. So now we know that *all parameters that have
# .requires_grad=True should be optimized.* Next, we make a list of such
# parameters and input this list to the SGD algorithm constructor.
#
# To verify this, check out the printed parameters to learn. When
# finetuning, this list should be long and include all of the model
# parameters. However, when feature extracting this list should be short
# and only include the weights and biases of the reshaped layers.
#
# Send the model to GPU
model_ft = model_ft.to(device)
# Gather the parameters to be optimized/updated in this run. If we are
# finetuning we will be updating all parameters. However, if we are
# doing feature extract method, we will only update the parameters
# that we have just initialized, i.e. the parameters with requires_grad
# is True.
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
params_to_update = []
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)
else:
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
######################################################################
# Run Training and Validation Step
# --------------------------------
#
# Finally, the last step is to setup the loss for the model, then run the
# training and validation function for the set number of epochs. Notice,
# depending on the number of epochs this step may take a while on a CPU.
# Also, the default learning rate is not optimal for all of the models, so
# to achieve maximum accuracy it would be necessary to tune for each model
# separately.
#
# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))
######################################################################
# Comparison with Model Trained from Scratch
# ------------------------------------------
#
# Just for fun, lets see how the model learns if we do not use transfer
# learning. The performance of finetuning vs. feature extracting depends
# largely on the dataset but in general both transfer learning methods
# produce favorable results in terms of training time and overall accuracy
# versus a model trained from scratch.
#
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))
# Plot the training curves of validation accuracy vs. number
# of training epochs for the transfer learning method and
# the model trained from scratch
ohist = []
shist = []
ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]
plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
######################################################################
# Final Thoughts and Where to Go Next
# -----------------------------------
#
# Try running some of the other models and see how good the accuracy gets.
# Also, notice that feature extracting takes less time because in the
# backward pass we do not have to calculate most of the gradients. There
# are many places to go from here. You could:
#
# - Run this code with a harder dataset and see some more benefits of
# transfer learning
# - Using the methods described here, use transfer learning to update a
# different model, perhaps in a new domain (i.e. NLP, audio, etc.)
# - Once you are happy with a model, you can export it as an ONNX model,
# or trace it using the hybrid frontend for more speed and optimization
# opportunities.
#