Skip to content

17656178609/rknn-llm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Description

RKLLM software stack can help users to quickly deploy AI models to Rockchip chips. The overall framework is as follows:

In order to use RKNPU, users need to first run the RKLLM-Toolkit tool on the computer, convert the trained model into an RKLLM format model, and then inference on the development board using the RKLLM C API.

  • RKLLM-Toolkit is a software development kit for users to perform model conversionand quantization on PC.

  • RKLLM Runtime provides C/C++ programming interfaces for Rockchip NPU platform to help users deploy RKLLM models and accelerate the implementation of LLM applications.

  • RKNPU kernel driver is responsible for interacting with NPU hardware. It has been open source and can be found in the Rockchip kernel code.

Support Platform

  • RK3588 Series
  • RK3576 Series

Support Models

Download

  • You can also download all packages, docker image, examples, docs and platform-tools from RKLLM_SDK, fetch code: rkllm

RKNN Toolkit2

If you want to deploy additional AI model, we have introduced a SDK called RKNN-Toolkit2. For details, please refer to:

https://github.com/airockchip/rknn-toolkit2

CHANGELOG

v1.0.1

  • Optimize model conversion memory occupation
  • Optimize inference memory occupation
  • Increase prefill speed
  • Reduce initialization time
  • Improve quantization accuracy
  • Add support for Gemma, ChatGLM3, MiniCPM, InternLM2, and Phi-3
  • Add Server invocation
  • Add inference interruption interface
  • Add logprob and token_id to the return value

for older version, please refer CHANGELOG

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 52.9%
  • C 21.5%
  • Shell 14.9%
  • C++ 9.3%
  • CMake 1.4%