This repo is fo training a Low Rank Adaptation of the protein language model ESM-2 for an RNA binding site predictor. This is a binary token classification task. The model is the smallest of the ESM-2 models facebook/esm2_t6_8M_UR50D. The train/test split was 75/25 and the model achieves an eval loss of 0.1791934072971344. The model weights and configuration can be found on Hugging Face here.
To train your own, clone the repo and create a conda environment using the environment.yaml
file. Then run:
from lora_binding_sites_newest_v3 import main
main()
To use the model, try running:
from transformers import AutoModelForTokenClassification, AutoTokenizer
from peft import PeftModel
import torch
# Path to the saved LoRA model
model_path = "best_model_dir\\final_best_model"
# ESM2 base model
base_model_path = "facebook/esm2_t6_8M_UR50D"
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Load the tokenizer
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Protein sequence for inference
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
# Tokenize the sequence
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
# Define labels
id2label = {
0: "No binding site",
1: "Binding site"
}
# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))