-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvbhmm_train.py
806 lines (692 loc) · 39.7 KB
/
vbhmm_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
#!/usr/bin/env python
# @Authors: Dominik Klement (xkleme15@vutbr.cz), Brno University of Technology
import os
from math import ceil
from shutil import copy as shell_copy
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from scipy.linalg import eigh
from scipy.optimize import linear_sum_assignment
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from socket import gethostname
from datetime import datetime
import yamlargparse
from VBx.dataset.data_loader import create_data_loader
from VBx.utils.kaldi_utils import read_plda
from VBx.models import VBx as VBx
from VBx.dataset.dataset import BasicDataset
from VBx.dataset.data_file_loader import DataFileLoader
from VBx.utils.config import process_args
from VBx.utils.metrics import DER
mpl.rcParams['figure.dpi'] = 150
def read_kaldi_plda(path):
plda_mu, plda_tr, plda_psi = read_plda(path)
W = np.linalg.inv(plda_tr.T.dot(plda_tr))
B = np.linalg.inv((plda_tr.T / plda_psi).dot(plda_tr))
acvar, wccn = eigh(B, W)
plda_psi = acvar[::-1]
plda_tr = wccn.T[::-1]
return plda_mu, plda_psi, plda_tr
def trace_handler(prof):
print(prof.key_averages().table(row_limit=-1))
prof.export_chrome_trace("test_trace_" + str(prof.step_num) + ".json")
def plot_gammas(gammas, ys_alig, zero_ones_labels=False):
colors = ['#61a4f1', '#a7f3e5', '#083167', '#c3a443', '#880b08', '#9f2903', '#7c3d2a',
'#63d0fc',
'#edce04', '#fa3dcf', '#82cefb', '#5f54b5', '#65388d', '#03a6d0', '#84cb7a',
'#485a18',
'#474c85', '#67edbb', '#85d7e6', '#7fb5ea', '#96591d', '#298b53', '#522f12',
'#99c542',
'#3b17f0', '#e4ef46', '#7d4247', '#9ded6f', '#260995', '#64ec6b', '#33f63d',
'#7e5a90',
'#448cc8', '#36b23f', '#eafb65', '#99f0e0', '#c059f3', '#02b8b5', '#c3e236',
'#5f8ed3',
"#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059",
"#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87",
"#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80",
"#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100",
"#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F",
"#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09",
"#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66",
"#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C",
"#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81",
"#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00",
"#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700",
"#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329",
"#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C",
"#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800",
"#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51",
"#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#7ED379", "#012C58"
]
_, axs = plt.subplots(len(gammas), 1)
ax_ind = -1
for gamma, y_alig in zip(gammas, ys_alig):
ax_ind += 1
label_counter = -1
for i in range(gamma.shape[1]):
current_color = colors[i]
axs[ax_ind].plot(gamma[:, i], color=current_color, linewidth=0.5)
if y_alig is not None:
if zero_ones_labels:
# If we use zero_ones labels, dashed lines may overlap which makes discriminating
# overlapped ground truth labels impossible.
if torch.sum(y_alig[:, i] == 1.0) > 0:
label_counter += 1
axs[ax_ind].plot(torch.clamp_min_(y_alig[:, i] - 0.04 * label_counter, 0.0), '--',
color=current_color, linewidth=0.5)
else:
axs[ax_ind].plot(y_alig[:, i], '--', color=current_color, linewidth=0.5)
for j in range(gamma.shape[0]):
# This line makes the overlapped colors in case of ZERO_ONES, and white in case of
# prob. labels.
if y_alig[j][i] == 1:
axs[ax_ind].axvspan(j - 0.5, j + 0.5, facecolor=current_color, alpha=0.2)
def plot_files(dset, indices, processed=False, zero_ones_labels=False, plot_qinit_only=False):
"""
If processed is true, it plots the exactly same gammas that are on input to the loss fn.
"""
with torch.no_grad():
plt.clf()
gammas = []
ys_alig = []
for sp in indices:
_, _, fn, x, qinit, y = dset[sp]
if plot_qinit_only:
gamma = qinit
else:
pi_init = torch.ones(qinit.size()[1], dtype=torch.double, requires_grad=False) / qinit.size()[1]
if args.run_dist:
log_gamma, gamma, pi, Li = ddp_model(x, pi=pi_init, gamma=qinit)
if processed:
gamma = ddp_model.module.process_gammas(log_gamma)
else:
log_gamma, gamma, pi, Li = model(x, pi=pi_init, gamma=qinit)
if processed:
gamma = model.process_gammas(log_gamma)
decisions_t = torch.transpose(gamma, 0, 1)
cost_mx2 = torch.matmul(1 - decisions_t, y) + torch.matmul(decisions_t, 1 - y)
pred_alig, ref_alig = linear_sum_assignment(cost_mx2.detach())
y_alig = y[:, ref_alig]
gammas.append(gamma)
ys_alig.append(y_alig)
plot_gammas(gammas, ys_alig, zero_ones_labels)
def eval_model(model, dset, run_dist, der_wrapper: DER, rank, world_size):
model.eval()
with torch.no_grad():
all_ders = []
for batch in dset:
batch_der = []
for sd, sn, fn, x, qinit, y in batch:
pi_init = torch.ones(qinit.size()[1],
dtype=torch.double,
requires_grad=False) / qinit.size()[1]
log_gamma, gamma, pi, Li = model(x, pi=pi_init, gamma=qinit)
assert (np.all(sd[fn][0] == np.array(sn)))
start, end = sd[fn][1].T
labels1st = torch.argmax(gamma, dim=1).numpy()
der, speech_amount = der_wrapper.der_tensor(start, end, labels1st, fn)
batch_der.append((fn, der, speech_amount))
if run_dist:
batch_ders = [[] for _ in range(world_size)]
dist.all_gather_object(batch_ders, batch_der)
else:
batch_ders = [batch_der]
if rank == 0:
all_ders.append(batch_ders)
if rank == 0:
# Get rid of repetitive files (sampling w repetitions is used for dist. batching)
files_dict = dict()
for batch_ders in all_ders:
for batch_der in batch_ders:
for fn, der, speech_amount in batch_der:
files_dict[fn] = (der * speech_amount, speech_amount)
total_der = sum([files_dict[x][0] for x in files_dict])
total_speech = sum([files_dict[x][1] for x in files_dict])
return 100.0 * total_der / total_speech
def get_exp_name(args):
suffix = datetime.strftime(datetime.now(), '%b%d_%H-%M-%S_') + gethostname()
if 'dihard' in args.in_trainlist.lower():
if 'domains' in args.in_trainlist.lower():
train_dset = 'dihard_' + '.'.join(args.in_trainlist.lower().split('/')[1].split('.')[:-2])
else:
train_dset = 'dihard'
elif 'ch' in args.in_trainlist.lower() or '/train.txt' in args.in_trainlist.lower():
train_dset = 'callhome'
elif 'ami' in args.in_trainlist.lower():
train_dset = 'ami'
else:
train_dset = os.path.basename(args.in_trainlist)
config_name = os.path.basename(args.config_path[0].abs_path).split('.yml')[0]
back_prop_type_initials = ''.join(map(lambda x: x[0], args.backprop_type.name.lower().split('_')))
name = f"{config_name}" \
f"__{train_dset}__" \
f"{args.gt_label_type}" \
f"_fa_{args.Fa}" \
f"_fb_{args.Fb}" \
f"_pl_{args.loopP}" \
f"_loss_{args.loss.name.lower()}" \
f"_ils_{args.initial_loss_scale}" \
f"_mit_{args.max_iters}" \
f"_bpt_{back_prop_type_initials}" \
f"_brc_{args.regularization_coeff_eb}" \
f"_wrc_{args.regularization_coeff_ew}" \
f"_ls_{int(args.use_loss_scale)}" \
f"_reg_{int(args.use_regularization)}" \
f"_ism_{float(args.init_smoothing)}"
if args.use_gmm:
name += '_gmm'
else:
name += '_hmm'
if args.exp_name_tag is not None:
name += '_tag_' + args.exp_name_tag
return f'{name}_{suffix}'
if __name__ == '__main__':
parser = yamlargparse.ArgumentParser()
parser.add_argument('--in-GTlabels-dir', required=True, type=str,
help='Directory with the ground truth xvector labels')
parser.add_argument('--in-INITlabels-dir', required=True, type=str,
help='Directory with the AHC initialization xvector labels')
parser.add_argument('--in-val-GTlabels-dir', required=False, type=str,
help='Directory with the ground truth xvector labels for validation set')
parser.add_argument('--in-val-INITlabels-dir', required=False, type=str,
help='Directory with the AHC initialization xvector labels for validation set')
parser.add_argument('--in-trainlist', required=True, type=str,
help='txt list of training files')
parser.add_argument('--in-vallist', required=True, type=str,
help='txt list of validation files')
parser.add_argument('--in-train-gt-rttm-dir', required=True, type=str,
help='Path to the directory containing training ground truth RTTM files.')
parser.add_argument('--in-val-gt-rttm-dir', required=True, type=str,
help='Path to the directory containing validation ground truth RTTM files.')
parser.add_argument('--xvec-ark-dir', required=True, type=str,
help='Kaldi ark with x-vectors from one or more '
'input recordings. Attention: all x-vectors from '
'one recording must be in one ark file')
parser.add_argument('--segments-dir', required=True, type=str,
help='File with x-vector timing info. See '
'diarization_lib.read_xvector_timing_dict')
parser.add_argument('--val-xvec-ark-dir', required=False, type=str,
help='Kaldi ark with x-vectors from one or more '
'input recordings. Attention: all x-vectors from '
'one recording must be in one ark file')
parser.add_argument('--val-segments-dir', required=False, type=str,
help='File with x-vector timing info. See '
'diarization_lib.read_xvector_timing_dict')
# Eval Dataset Params
parser.add_argument('--in-eval-list', required=False, type=str,
help='txt list of evaluation files')
parser.add_argument('--in-eval-GTlabels-dir', required=False, type=str,
help='Directory with the ground truth xvector labels')
parser.add_argument('--in-eval-INITlabels-dir', required=False, type=str,
help='Directory with the AHC initialization xvector labels for evaluation set.')
parser.add_argument('--eval-xvec-ark-dir', required=False, type=str,
help='Kaldi ark with x-vectors from one or more '
'input recordings. Attention: all x-vectors from '
'one recording must be in one ark file')
parser.add_argument('--eval-segments-dir', required=False, type=str,
help='File with x-vector timing info. See '
'diarization_lib.read_xvector_timing_dict')
parser.add_argument('--in-eval-gt-rttm-dir', required=False, type=str,
help='Path to the directory containing evaluation ground truth RTTM files.')
parser.add_argument('--xvec-transform', required=True, type=str,
help='path to x-vector transformation h5 file')
parser.add_argument('--plda-file', required=True, type=str,
help='File with PLDA model in Kaldi format used for '
'AHC and VB-HMM x-vector clustering')
parser.add_argument('--threshold', required=True, type=float,
help='args.threshold (bias) used for AHC')
parser.add_argument('--lda-dim', required=True, type=int,
help='For VB-HMM, x-vectors are reduced to this '
'dimensionality using LDA')
parser.add_argument('--Fa', required=True, type=float,
help='Parameter of VB-HMM (see VBx.VBx)')
parser.add_argument('--Fb', required=True, type=float,
help='Parameter of VB-HMM (see VBx.VBx)')
parser.add_argument('--loopP', required=True, type=float,
help='Parameter of VB-HMM (see VBx.VBx)')
parser.add_argument('--target-energy', required=False, type=float,
default=1.0,
help='Parameter affecting AHC if the similarity '
'matrix is obtained with PLDA. See '
'diarization_lib.kaldi_ivector_plda_scoring_dense')
parser.add_argument('--init-smoothing', required=False, type=float,
default=3,
help='AHC produces hard assignments of x-vetors to '
'speakers. These are "smoothed" to soft '
'assignments as the args.initialization for '
'VB-HMM. This parameter controls the amount of '
'smoothing. Not so important, high value '
'(e.g. 10) is OK => keeping hard assigment')
parser.add_argument('--gt-label-type', required=False, type=str,
default="SINGLE_SPK",
help='Ground truth labels are used as probabilities '
'that denote the percentage of presence of each '
'speaker\'s speech in the x-vector (PROBABILITIES), '
'as 0 or 1 values that denote the presence or absence '
'of speech of a speaker in a x-vector (ZERO_ONES) '
'or as a indicator of the speaker that speaks the most '
'in the x-vector (SINGLE_SPK)')
parser.add_argument('-c', '--config-path', required=True, type=str, action=yamlargparse.ActionConfigFile,
help='Path to config.json file.')
parser.add_argument('--run-dist', required=False, default=False, action='store_true',
help='If present, the training has to be run with torchrun.')
parser.add_argument('--continue-log-dir', required=False,
help='Tensorboard log dir to continue the training process from.')
parser.add_argument('--eval-after-steps', required=False, type=int, default=-1,
help='Number of update steps (batches) to evaluate the model on validation data after.')
parser.add_argument('--eval-after-epochs', required=False, type=int, default=20,
help='Number of epochs after which the model is going to be evaluated on train, dev, eval'
'datasets. This argument can be overridden by --eval-after-steps, which means that '
'the model will be evaluated after --eval-after-epochs number of epochs only if '
'--eval-after-steps is not present (i.e. set to -1).')
parser.add_argument('--save-checkpoint-after-steps', required=False, type=int, default=-1,
help='Saves model checkpoint after n update steps (batches).')
parser.add_argument('--tb-path', required=False, type=str,
help='Path to the tensorboard logging dir. If not provided, a default one will be used, '
'which consists of date and hostname.')
parser.add_argument('--num-threads-per-worker', type=int, default=1,
help='Number of torch threads used for tensor operations.')
parser.add_argument('--use-gmm', required=False, default=False, action='store_true',
help='If present, GMM is used instead of HMM, i.e. ploop=0.')
parser.add_argument('--plot-gammas', required=False, default=False, action='store_true',
help='Gamma plots of pre-selected files are logged into TensorBoard if the option is present.')
parser.add_argument('--exp-name-tag', required=False, type=str,
help='It helps with classifying the experiments into groups/tags to better navigate through '
'TB search.')
parser.add_argument('--init-model-path', required=False, type=str,
help='Path to initial model. If loaded, Fa, Fb, loopP will be overridden.')
# YAML config parameters
parser.add_argument('--avg-last-n-iters', type=int, default=-1,
help='Dictates how many last VB iterations are averaged to compute gradients '
'(in case of using after_each_iter backprop_type)')
parser.add_argument('--backprop-type', type=str, default='after_each_iter',
help='Gradient computation type: after_convergence, or after_each_iter.')
parser.add_argument('--batch-size', type=int, default=8, help='Batch size.')
parser.add_argument('--early-stop-vb', type=bool, default=False,
help='If True, VB inference is stopped during training if ELBO stops increasing.')
parser.add_argument('--eval-max-iters', type=int, default=40,
help='Max number of VB iterations used during inference/evaluation.')
parser.add_argument('--eval-early-stop-vb', type=bool, default=True,
help='Same as --early-stop-vb but during evaluation.')
parser.add_argument('--epochs', type=int, default=500, help='Number of passes through the whole training set.')
parser.add_argument('--initial-loss-scale', type=float, default=1,
help='Initial value of loss scale (calibration).')
parser.add_argument('--loss', type=str, default='EDE', help='Training loss, either BCE or DER.')
parser.add_argument('--lr', help='Learning rates.')
parser.add_argument('--max-iters', type=int, default=10,
help='Max number of VB iterations during training (if early_stop_vb is False, than it will '
'run --max-iters of VB iterations no matter the ELBO convergence')
parser.add_argument('--regularization-coeff-eb', default=0, type=float,
help='KL divergence between-speaker covariance matrix regularization coefficient.')
parser.add_argument('--regularization-coeff-ew', default=0, type=float,
help='KL divergence within-speaker covariance matrix regularization coefficient.')
parser.add_argument('--trainable-params', default=['fa', 'fb', 'lp', 'ism'], nargs='*',
help='List of trainable parameters.')
parser.add_argument('--use-full-tr', type=bool, default=False,
help='Use full transition matrix (i.e. allow HMM to have connection '
'between all pairs of nodes).')
parser.add_argument('--use-loss-scale', type=bool, default=False,
help='If true, loss scale (calibration) is used.')
parser.add_argument('--use-loss-weights', type=bool, default=False,
help='Gradients are computed as a weighted average of the VB iteration gradients.')
parser.add_argument('--use-regularization', type=bool, default=False,
help='If True, KL divergence regularization towards the original (generatively trained) '
'PLDA covariance matrices is used.')
parser.add_argument('--use-sigmoid-loss-weights', type=bool, default=False,
help='If true, loss weights for iteration i are computed as 1 - product of '
'weights for weights i,i+1, ..., n.')
args = parser.parse_args()
if args.run_dist:
dist.init_process_group("gloo")
rank = dist.get_rank()
world_size = dist.get_world_size()
print(f"Start running basic DDP example on rank {rank}.")
else:
rank = 0
world_size = 1
# Continue training, i.e. use the previously set config file.
if args.continue_log_dir is not None:
config_fname = list(filter(lambda x: '.yml' in x, os.listdir(args.continue_log_dir)))[0]
args = parser.parse_args(['-c', f'{args.continue_log_dir}/{config_fname}'])
process_args(args)
assert 0 <= args.loopP <= 1, f'Expecting loopP between 0 and 1, got {args.loopP} instead.'
plda_mu, plda_psi, plda_tr = read_kaldi_plda(args.plda_file)
torch.set_num_threads(args.num_threads_per_worker)
if rank == 0:
if args.continue_log_dir is None:
tb_path = args.tb_path
if not tb_path:
tb_path = os.getcwd() + '/runs/' + get_exp_name(args)
tb_writer = SummaryWriter(log_dir=tb_path)
else:
tb_writer = SummaryWriter(log_dir=args.continue_log_dir)
if args.continue_log_dir is None:
tb_writer.add_hparams({
'fa': args.Fa,
'fb': args.Fb,
'ploop': args.loopP,
'max_iters': args.max_iters,
'loss': args.loss.name,
'use_full_tr': args.use_full_tr,
'use_loss_scale': args.use_loss_scale,
'use_loss_weights': args.use_loss_weights,
'batch_size': args.batch_size,
'backprop_type': args.backprop_type.name,
'init_smoothing': args.init_smoothing,
'gt_label_type': args.gt_label_type,
'in_trainlist': args.in_trainlist,
'use_gmm': args.use_gmm
}, {
'der': 0
})
shell_copy(args.config_path[0].abs_path, tb_writer.log_dir)
# We want equal batches across workers.
assert args.batch_size % world_size == 0, 'Batch size have to be divisible by the number of processes.'
model = VBx.DiscriminativeVB(device=torch.device("cpu"),
phi=torch.from_numpy(plda_psi[:args.lda_dim].copy()),
tr=torch.from_numpy(plda_tr.copy()),
fa=args.Fa,
fb=args.Fb,
loop_p=args.loopP,
config=args,
init_smoothing=args.init_smoothing,
epsilon=1e-6,
use_gmm=args.use_gmm)
if args.init_model_path is not None:
model.load_model(args.init_model_path)
step_counter = 0
starting_epoch = 1
if args.continue_log_dir is not None:
max_ep = max(*[int(x.split('ep_')[1][:-3]) for x in os.listdir(f'{args.continue_log_dir}/checkpoints')])
starting_epoch, step_counter = model.load_model(f'{args.continue_log_dir}/checkpoints/model_ep_{max_ep}.pt')
starting_epoch += 1
step_counter += 1
if args.run_dist:
ddp_model = DDP(model, find_unused_parameters=False)
train_list = np.loadtxt(args.in_trainlist, dtype=object)
val_list = np.loadtxt(args.in_vallist, dtype=object)
der_train = DER(train_list, args.in_train_gt_rttm_dir)
der_val = DER(val_list, args.in_val_gt_rttm_dir)
if args.in_eval_gt_rttm_dir:
eval_list = np.loadtxt(args.in_eval_list, dtype=object)
der_eval = DER(eval_list, args.in_eval_gt_rttm_dir)
else:
eval_list = []
der_eval = None
dfl = DataFileLoader(plda_mu,
args.segments_dir,
args.in_INITlabels_dir,
args.xvec_ark_dir,
args.in_GTlabels_dir,
args.xvec_transform,
args.init_smoothing,
args.gt_label_type)
# In case some validation file is not provided, use the val part of the training set.
if args.in_val_INITlabels_dir is None or \
args.in_val_GTlabels_dir is None or \
args.val_xvec_ark_dir is None or \
args.val_segments_dir is None:
val_dfl = dfl
else:
val_dfl = DataFileLoader(plda_mu,
args.val_segments_dir,
args.in_val_INITlabels_dir,
args.val_xvec_ark_dir,
args.in_val_GTlabels_dir,
args.xvec_transform,
args.init_smoothing,
args.gt_label_type)
# Eval rttm dir arg presence determines whether to score the Eval dataset or not.
if args.in_eval_gt_rttm_dir:
eval_dfl = DataFileLoader(plda_mu,
args.eval_segments_dir,
args.in_eval_INITlabels_dir,
args.eval_xvec_ark_dir,
args.in_eval_GTlabels_dir,
args.xvec_transform,
args.init_smoothing,
args.gt_label_type,
eval_mode=True)
eval_dset = BasicDataset(eval_list, eval_dfl)
else:
eval_dset = None
train_dset = BasicDataset(train_list, dfl)
val_dset = BasicDataset(val_list, val_dfl)
val_steps = args.eval_after_steps
if val_steps == -1:
val_steps = ceil(len(train_list) / args.batch_size) * args.eval_after_epochs
save_steps = args.save_checkpoint_after_steps
if save_steps == -1:
save_steps = ceil(len(train_list) / args.batch_size)
if args.run_dist:
train_dsampler = DistributedSampler(train_dset,
num_replicas=world_size,
rank=rank,
shuffle=True)
train_dl = DataLoader(train_dset,
batch_size=args.batch_size // world_size,
collate_fn=lambda x: x,
sampler=train_dsampler)
val_dl = DataLoader(val_dset,
batch_size=args.batch_size // world_size,
shuffle=False,
collate_fn=lambda x: x,
sampler=DistributedSampler(val_dset,
num_replicas=world_size,
rank=rank,
shuffle=False))
if args.in_eval_gt_rttm_dir:
eval_dl = DataLoader(eval_dset,
batch_size=args.batch_size // world_size,
shuffle=False,
collate_fn=lambda x: x,
sampler=DistributedSampler(eval_dset,
num_replicas=world_size,
rank=rank,
shuffle=False))
else:
train_dl = create_data_loader(train_dset,
batch_size=args.batch_size,
shuffle=True)
val_dl = create_data_loader(val_dset,
batch_size=args.batch_size,
shuffle=False)
if args.in_eval_gt_rttm_dir:
eval_dl = create_data_loader(eval_dset,
batch_size=args.batch_size,
shuffle=False)
if args.run_dist:
train_der = eval_model(ddp_model, train_dl, args.run_dist, der_train, rank, world_size)
val_der = eval_model(ddp_model, val_dl, args.run_dist, der_val, rank, world_size)
if args.in_eval_gt_rttm_dir:
eval_der = eval_model(ddp_model, eval_dl, args.run_dist, der_eval, rank, world_size)
else:
train_der = eval_model(model, train_dl, args.run_dist, der_train, rank, world_size)
val_der = eval_model(model, val_dl, args.run_dist, der_val, rank, world_size)
if args.in_eval_gt_rttm_dir:
eval_der = eval_model(model, eval_dl, args.run_dist, der_eval, rank, world_size)
# Plot init gammas
if rank == 0:
if not args.continue_log_dir:
tb_writer.add_scalar('der/train_ep', train_der, 0)
tb_writer.add_scalar('der/val_ep', val_der, 0)
if args.in_eval_gt_rttm_dir:
tb_writer.add_scalar('der/eval_ep', eval_der, 0)
if 'dihard_exp' in args.in_GTlabels_dir:
train_file_indices = [78, 35, 90]
val_file_indices = [2, 5, 1, 3, 4]
elif 'ch' in args.in_GTlabels_dir:
train_file_indices = [1, 5, 185]
val_file_indices = [2, 5, 1, 3, 4]
elif 'ami' in args.in_GTlabels_dir:
train_file_indices = [1, 2, 3]
val_file_indices = [2, 5, 1, 3, 4]
else:
train_file_indices = [0, 1, 2, 3]
val_file_indices = [0, 1, 2, 3]
zero_ones_labels = args.gt_label_type == 'ZERO_ONES'
if args.plot_gammas:
plot_files(train_dset, train_file_indices, plot_qinit_only=True, zero_ones_labels=zero_ones_labels)
tb_writer.add_figure(f'gammas/train_init_gammas', plt.gcf(), 0)
plot_files(train_dset, val_file_indices, plot_qinit_only=True, zero_ones_labels=zero_ones_labels)
tb_writer.add_figure(f'gammas/val_init_gammas', plt.gcf(), 0)
# Save starting point model.
save_path = tb_writer.log_dir
if not os.path.exists(f'{save_path}/checkpoints'):
os.mkdir(f'{save_path}/checkpoints')
if args.run_dist:
ddp_model.module.save_model(f'{save_path}/checkpoints/model_ep_0.pt', 0, 0)
else:
model.save_model(f'{save_path}/checkpoints/model_ep_0.pt', 0, 0)
if args.run_dist:
dist.barrier()
for ep in range(starting_epoch, starting_epoch + args.epochs):
if args.run_dist:
train_dsampler.set_epoch(ep)
ep_losses = []
ep_raw_losses = []
for batch in train_dl:
step_counter += 1
batch_losses = []
batch_raw_losses = []
for _, _, _, x, qinit, y in batch:
pi_init = torch.ones(qinit.size()[1],
dtype=torch.double,
requires_grad=False) / qinit.size()[1]
if args.run_dist:
ddp_model.module.train()
log_gamma, gamma, pi, Li = ddp_model(x, pi=pi_init, gamma=qinit)
else:
model.train()
log_gamma, gamma, pi, Li = model(x, pi=pi_init, gamma=qinit)
loss, raw_loss = model.compute_loss(y)
batch_losses.append(loss)
batch_raw_losses.append(raw_loss)
ep_losses.append(loss.detach())
ep_raw_losses.append(raw_loss)
avg_loss = sum(batch_losses) / len(batch_losses)
avg_raw_loss = sum(batch_raw_losses) / len(batch_raw_losses)
model.optimize_params(avg_loss)
if rank == 0:
model.tb_log_params(tb_writer, 'params', 'step', step_counter)
model.tb_log_params_grads(tb_writer, 'grads', 'step', step_counter)
if args.run_dist:
KL_Ew, KL_Eb = ddp_model.module.compute_KL()
else:
KL_Ew, KL_Eb = model.compute_KL()
tb_writer.add_scalar('params/KL_Eb_step', KL_Eb.item(), step_counter)
tb_writer.add_scalar('params/KL_Ew_step', KL_Ew.item(), step_counter)
if args.run_dist:
batch_avg_losses = [0 for _ in range(world_size)]
batch_avg_raw_losses = [0 for _ in range(world_size)]
dist.all_gather_object(batch_avg_losses, avg_loss.item())
dist.all_gather_object(batch_avg_raw_losses, avg_raw_loss.item())
else:
batch_avg_losses = [avg_loss]
batch_avg_raw_losses = [avg_raw_loss]
if rank == 0:
batch_avg_loss = sum(batch_avg_losses) / len(batch_avg_losses)
batch_avg_raw_loss = sum(batch_avg_raw_losses) / len(batch_avg_raw_losses)
print(f"BatchLoss: {sum(batch_avg_losses) / len(batch_avg_losses)}")
tb_writer.add_scalar('train/loss_step', batch_avg_loss, step_counter)
tb_writer.add_scalar('train/raw_loss_step', batch_avg_raw_loss, step_counter)
if step_counter % val_steps == 0:
if args.run_dist:
ddp_model.module.eval()
else:
model.eval()
val_ep = step_counter // val_steps
val_losses = []
val_raw_losses = []
with torch.no_grad():
for batch in val_dl:
for _, _, _, x, qinit, y in batch:
pi_init = torch.ones(qinit.size()[1],
dtype=torch.double,
requires_grad=False) / qinit.size()[1]
if args.run_dist:
log_gamma, gamma, pi, Li = ddp_model(x, pi=pi_init, gamma=qinit)
else:
log_gamma, gamma, pi, Li = model(x, pi=pi_init, gamma=qinit)
loss, raw_loss = model.compute_loss(y)
val_losses.append(loss)
val_raw_losses.append(raw_loss)
if args.run_dist:
dist.barrier()
if args.run_dist:
val_avg_losses = [None for _ in range(world_size)]
val_avg_raw_losses = [None for _ in range(world_size)]
dist.all_gather_object(val_avg_losses, torch.mean(torch.stack(val_losses)))
dist.all_gather_object(val_avg_raw_losses, torch.mean(torch.stack(val_raw_losses)))
else:
val_avg_losses = [torch.mean(torch.stack(val_losses))]
val_avg_raw_losses = [torch.mean(torch.stack(val_raw_losses))]
if args.run_dist:
train_der = eval_model(ddp_model, train_dl, args.run_dist, der_train, rank, world_size)
val_der = eval_model(ddp_model, val_dl, args.run_dist, der_val, rank, world_size)
if args.in_eval_gt_rttm_dir:
eval_der = eval_model(ddp_model, eval_dl, args.run_dist, der_eval, rank, world_size)
else:
train_der = eval_model(model, train_dl, args.run_dist, der_train, rank, world_size)
val_der = eval_model(model, val_dl, args.run_dist, der_val, rank, world_size)
if args.in_eval_gt_rttm_dir:
eval_der = eval_model(model, eval_dl, args.run_dist, der_eval, rank, world_size)
if rank == 0:
# ToDo: Mention this val_ep conting into README !!! It can confuse a new user once eval after ..
# flag is set.
tb_writer.add_scalar('der/train_ep', train_der, val_ep)
tb_writer.add_scalar('der/val_ep', val_der, val_ep)
if args.in_eval_gt_rttm_dir:
tb_writer.add_scalar('der/eval_ep', eval_der, val_ep)
if args.plot_gammas:
plot_files(train_dset, train_file_indices, zero_ones_labels=zero_ones_labels)
tb_writer.add_figure(f'gammas/train_ep', plt.gcf(), val_ep)
plot_files(train_dset, train_file_indices, processed=True, zero_ones_labels=zero_ones_labels)
tb_writer.add_figure(f'gammas/train_loss_inp_ep', plt.gcf(), val_ep)
plot_files(val_dset, val_file_indices, zero_ones_labels=zero_ones_labels)
tb_writer.add_figure(f'gammas/val_ep', plt.gcf(), val_ep)
plot_files(val_dset, val_file_indices, processed=True, zero_ones_labels=zero_ones_labels)
tb_writer.add_figure(f'gammas/val_loss_inp_ep', plt.gcf(), val_ep)
avg_val_loss = sum(val_avg_losses) / len(val_avg_losses)
avg_val_raw_loss = sum(val_avg_raw_losses) / len(val_avg_raw_losses)
print(f"AvgValLoss: {avg_val_loss}")
tb_writer.add_scalar('train/val_loss_epoch', avg_val_loss, val_ep)
tb_writer.add_scalar('train/val_raw_loss_epoch', avg_val_raw_loss, val_ep)
if rank == 0 and step_counter % save_steps == 0:
save_ep = step_counter // save_steps
save_path = tb_writer.log_dir
if not os.path.exists(f'{save_path}/checkpoints'):
os.mkdir(f'{save_path}/checkpoints')
if args.run_dist:
ddp_model.module.save_model(f'{save_path}/checkpoints/model_ep_{save_ep}.pt', save_ep,
step_counter)
else:
model.save_model(f'{save_path}/checkpoints/model_ep_{save_ep}.pt', save_ep, step_counter)
# Log training progress
if args.run_dist:
ep_avg_losses = [None for _ in range(world_size)]
ep_avg_raw_losses = [None for _ in range(world_size)]
dist.all_gather_object(ep_avg_losses, torch.mean(torch.stack(ep_losses)))
dist.all_gather_object(ep_avg_raw_losses, torch.mean(torch.stack(ep_raw_losses)))
else:
ep_avg_losses = [torch.mean(torch.stack(ep_losses))]
ep_avg_raw_losses = [torch.mean(torch.stack(ep_raw_losses))]
if rank == 0:
avg_ep_loss = sum(ep_avg_losses) / len(ep_avg_losses)
avg_ep_raw_loss = sum(ep_avg_raw_losses) / len(ep_avg_raw_losses)
print(f'AvgEpLoss: {avg_ep_loss}')
tb_writer.add_scalar('train/loss_epoch', avg_ep_loss, ep)
tb_writer.add_scalar('train/raw_loss_epoch', avg_ep_raw_loss, ep)
if args.run_dist:
dist.barrier()
print("DONE")
if rank == 0:
tb_writer.close()
if args.run_dist:
dist.destroy_process_group()