Skip to content

Commit

Permalink
🥧 not loving the venn - so we move
Browse files Browse the repository at this point in the history
  • Loading branch information
TanyaS08 committed Feb 12, 2024
1 parent e1e0c1e commit 76d1df6
Show file tree
Hide file tree
Showing 16 changed files with 33 additions and 26 deletions.
4 changes: 2 additions & 2 deletions _freeze/index/execute-results/docx.json

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions _freeze/index/execute-results/html.json

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions _freeze/index/execute-results/tex.json

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions _freeze/index/execute-results/xml.json

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
4 changes: 2 additions & 2 deletions _freeze/notebooks/model_qualitative/execute-results/html.json
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
{
"hash": "c163c0bc888ace978c5361d9d32a631b",
"hash": "b87fc1c321774496b08f4c34638c5fcf",
"result": {
"engine": "knitr",
"markdown": "---\ntitle: Qualitative approach to topology generators\nauthor: Tanya Strydom\n---\n\n\nHere we will use the standard [REF FOR TIDYVERSE] and @gaoGgVennDiagramIntuitiveEasytoUse2021 to create a venn diagram for the quantitative portion of or generator/model overview process.\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nlibrary(tidyverse)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──\n✔ dplyr 1.1.4 ✔ readr 2.1.5\n✔ forcats 1.0.0 ✔ stringr 1.5.1\n✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n✔ lubridate 1.9.3 ✔ tidyr 1.3.1\n✔ purrr 1.0.2 \n── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──\n✖ dplyr::filter() masks stats::filter()\n✖ dplyr::lag() masks stats::lag()\nℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n```\n\n\n:::\n\n```{.r .cell-code .hidden}\nlibrary(ggVennDiagram)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n\nAttaching package: 'ggVennDiagram'\n\nThe following object is masked from 'package:tidyr':\n\n unite\n```\n\n\n:::\n:::\n\n\n\nFirst we need to create the \n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\ngenes <- paste(\"gene\",1:1000,sep=\"\")\nset.seed(20231214)\nx <- list(A=sample(genes,300),\n B=sample(genes,525),\n C=sample(genes,440),\n D=sample(genes,350))\n```\n:::\n\n\nCreate spatial plot:\n\n\n::: {#cell-fig-venn .cell}\n\n```{.r .cell-code .hidden}\n#| label: fig-venn\n#| fig-cap: \"Venn diagram for qualitative analysis/overview of the fancy maths things\"\n#| fig-alt: \"TODO\"\nggVennDiagram(x) + \n scale_fill_gradient(low=\"grey90\",\n high = \"red\")\n```\n\n::: {.cell-output-display}\n![Venn diagram for qualitative analysis/overview of the fancy maths things](model_qualitative_files/figure-html/fig-venn-1.png){#fig-venn fig-alt='TODO' width=672}\n:::\n:::\n\n\n## References {.unnumbered}\n\n::: {#refs}\n:::",
"markdown": "---\ntitle: Qualitative approach to topology generators\nauthor: Tanya Strydom\n---\n\n\nHere we will use the standard [REF FOR TIDYVERSE] and @gaoGgVennDiagramIntuitiveEasytoUse2021 to create a venn diagram for the quantitative portion of or generator/model overview process.\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nlibrary(tidyverse)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──\n✔ dplyr 1.1.4 ✔ readr 2.1.5\n✔ forcats 1.0.0 ✔ stringr 1.5.1\n✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n✔ lubridate 1.9.3 ✔ tidyr 1.3.1\n✔ purrr 1.0.2 \n── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──\n✖ dplyr::filter() masks stats::filter()\n✖ dplyr::lag() masks stats::lag()\nℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n```\n\n\n:::\n\n```{.r .cell-code .hidden}\nlibrary(ggVennDiagram)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n\nAttaching package: 'ggVennDiagram'\n\nThe following object is masked from 'package:tidyr':\n\n unite\n```\n\n\n:::\n:::\n\n\n\nFirst we need to create the df with the relevant 'traits' for each model\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nx <- list(Niche=c(\"species agnostic\", \"structural\", \"synthetic network\"),\n ADBM=c(\"node-level\", \"mechanistic\"),\n `Transfer`=c(\"node-level\", \"embedding\", \"metaweb\"),\n PFIM=c(\"node-level\", \"mechanistic\", \"metaweb\"),\n Cascade=c(\"species agnostic\", \"structural\", \"synthetic network\"))\n\nvenn <- Venn(x)\ndata <- process_data(venn)\n```\n:::\n\n\nCreate venn diagram:\n\n\n::: {#cell-fig-venn .cell}\n\n```{.r .cell-code .hidden}\n#| label: fig-venn\n#| fig-cap: \"Venn diagram for qualitative analysis/overview of the fancy maths things\"\n#| fig-alt: \"TODO\"\nggVennDiagram(x, \n label = \"none\") +\n theme_void() +\n theme(legend.position = 'none')\n```\n\n::: {.cell-output-display}\n![Venn diagram for qualitative analysis/overview of the fancy maths things](model_qualitative_files/figure-html/fig-venn-1.png){#fig-venn fig-alt='TODO' width=672}\n:::\n:::\n\n\nLooking at it now I don't think this is the wayTM and trying to sort of 'ordinate' modelling space might actually be more meaningful... Specifically thinking here that I need to also actually just read about model comparison (but without the performance aspect)\n\n## References {.unnumbered}\n\n::: {#refs}\n:::",
"supporting": [
"model_qualitative_files/figure-html"
],
Expand Down
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
{
"hash": "c163c0bc888ace978c5361d9d32a631b",
"hash": "b87fc1c321774496b08f4c34638c5fcf",
"result": {
"engine": "knitr",
"markdown": "---\ntitle: Qualitative approach to topology generators\nauthor: Tanya Strydom\n---\n\n\nHere we will use the standard [REF FOR TIDYVERSE] and @gaoGgVennDiagramIntuitiveEasytoUse2021 to create a venn diagram for the quantitative portion of or generator/model overview process.\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nlibrary(tidyverse)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──\n✔ dplyr 1.1.4 ✔ readr 2.1.5\n✔ forcats 1.0.0 ✔ stringr 1.5.1\n✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n✔ lubridate 1.9.3 ✔ tidyr 1.3.1\n✔ purrr 1.0.2 \n── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──\n✖ dplyr::filter() masks stats::filter()\n✖ dplyr::lag() masks stats::lag()\nℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n```\n\n\n:::\n\n```{.r .cell-code .hidden}\nlibrary(ggVennDiagram)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n\nAttaching package: 'ggVennDiagram'\n\nThe following object is masked from 'package:tidyr':\n\n unite\n```\n\n\n:::\n:::\n\n\n\nFirst we need to create the \n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\ngenes <- paste(\"gene\",1:1000,sep=\"\")\nset.seed(20231214)\nx <- list(A=sample(genes,300),\n B=sample(genes,525),\n C=sample(genes,440),\n D=sample(genes,350))\n```\n:::\n\n\nCreate spatial plot:\n\n\n::: {#cell-fig-venn .cell}\n\n```{.r .cell-code .hidden}\n#| label: fig-venn\n#| fig-cap: \"Venn diagram for qualitative analysis/overview of the fancy maths things\"\n#| fig-alt: \"TODO\"\nggVennDiagram(x) + \n scale_fill_gradient(low=\"grey90\",\n high = \"red\")\n```\n\n::: {.cell-output-display}\n![Venn diagram for qualitative analysis/overview of the fancy maths things](model_qualitative_files/figure-ipynb/fig-venn-1.png){#fig-venn fig-alt='TODO'}\n:::\n:::\n\n\n## References {.unnumbered}\n\n::: {#refs}\n:::",
"markdown": "---\ntitle: Qualitative approach to topology generators\nauthor: Tanya Strydom\n---\n\n\nHere we will use the standard [REF FOR TIDYVERSE] and @gaoGgVennDiagramIntuitiveEasytoUse2021 to create a venn diagram for the quantitative portion of or generator/model overview process.\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nlibrary(tidyverse)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──\n✔ dplyr 1.1.4 ✔ readr 2.1.5\n✔ forcats 1.0.0 ✔ stringr 1.5.1\n✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n✔ lubridate 1.9.3 ✔ tidyr 1.3.1\n✔ purrr 1.0.2 \n── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──\n✖ dplyr::filter() masks stats::filter()\n✖ dplyr::lag() masks stats::lag()\nℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n```\n\n\n:::\n\n```{.r .cell-code .hidden}\nlibrary(ggVennDiagram)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n\nAttaching package: 'ggVennDiagram'\n\nThe following object is masked from 'package:tidyr':\n\n unite\n```\n\n\n:::\n:::\n\n\n\nFirst we need to create the df with the relevant 'traits' for each model\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nx <- list(Niche=c(\"species agnostic\", \"structural\", \"synthetic network\"),\n ADBM=c(\"node-level\", \"mechanistic\"),\n `Transfer`=c(\"node-level\", \"embedding\", \"metaweb\"),\n PFIM=c(\"node-level\", \"mechanistic\", \"metaweb\"),\n Cascade=c(\"species agnostic\", \"structural\", \"synthetic network\"))\n\nvenn <- Venn(x)\ndata <- process_data(venn)\n```\n:::\n\n\nCreate venn diagram:\n\n\n::: {#cell-fig-venn .cell}\n\n```{.r .cell-code .hidden}\n#| label: fig-venn\n#| fig-cap: \"Venn diagram for qualitative analysis/overview of the fancy maths things\"\n#| fig-alt: \"TODO\"\nggVennDiagram(x, \n label = \"none\") +\n theme_void() +\n theme(legend.position = 'none')\n```\n\n::: {.cell-output-display}\n![Venn diagram for qualitative analysis/overview of the fancy maths things](model_qualitative_files/figure-ipynb/fig-venn-1.png){#fig-venn fig-alt='TODO'}\n:::\n:::\n\n\nLooking at it now I don't think this is the wayTM and trying to sort of 'ordinate' modelling space might actually be more meaningful... Specifically thinking here that I need to also actually just read about model comparison (but without the performance aspect)\n\n## References {.unnumbered}\n\n::: {#refs}\n:::",
"supporting": [
"model_qualitative_files"
"model_qualitative_files/figure-ipynb"
],
"filters": [
"rmarkdown/pagebreak.lua"
Expand Down
4 changes: 2 additions & 2 deletions _freeze/notebooks/model_qualitative/execute-results/xml.json
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
{
"hash": "c163c0bc888ace978c5361d9d32a631b",
"hash": "b87fc1c321774496b08f4c34638c5fcf",
"result": {
"engine": "knitr",
"markdown": "---\ntitle: Qualitative approach to topology generators\nauthor: Tanya Strydom\n---\n\n\n\n\nHere we will use the standard [REF FOR TIDYVERSE] and @gaoGgVennDiagramIntuitiveEasytoUse2021 to create a venn diagram for the quantitative portion of or generator/model overview process.\n\n\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nlibrary(tidyverse)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──\n✔ dplyr 1.1.4 ✔ readr 2.1.5\n✔ forcats 1.0.0 ✔ stringr 1.5.1\n✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n✔ lubridate 1.9.3 ✔ tidyr 1.3.1\n✔ purrr 1.0.2 \n── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──\n✖ dplyr::filter() masks stats::filter()\n✖ dplyr::lag() masks stats::lag()\nℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n```\n\n\n:::\n\n```{.r .cell-code .hidden}\nlibrary(ggVennDiagram)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n\nAttaching package: 'ggVennDiagram'\n\nThe following object is masked from 'package:tidyr':\n\n unite\n```\n\n\n:::\n:::\n\n\n\n\n\nFirst we need to create the \n\n\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\ngenes <- paste(\"gene\",1:1000,sep=\"\")\nset.seed(20231214)\nx <- list(A=sample(genes,300),\n B=sample(genes,525),\n C=sample(genes,440),\n D=sample(genes,350))\n```\n:::\n\n\n\n\nCreate spatial plot:\n\n\n\n\n::: {#cell-fig-venn .cell}\n\n```{.r .cell-code .hidden}\n#| label: fig-venn\n#| fig-cap: \"Venn diagram for qualitative analysis/overview of the fancy maths things\"\n#| fig-alt: \"TODO\"\nggVennDiagram(x) + \n scale_fill_gradient(low=\"grey90\",\n high = \"red\")\n```\n\n::: {.cell-output-display}\n![Venn diagram for qualitative analysis/overview of the fancy maths things](model_qualitative_files/figure-jats/fig-venn-1.png){#fig-venn fig-alt='TODO'}\n:::\n:::\n\n\n\n\n## References {.unnumbered}\n\n::: {#refs}\n:::",
"markdown": "---\ntitle: Qualitative approach to topology generators\nauthor: Tanya Strydom\n---\n\n\n\n\nHere we will use the standard [REF FOR TIDYVERSE] and @gaoGgVennDiagramIntuitiveEasytoUse2021 to create a venn diagram for the quantitative portion of or generator/model overview process.\n\n\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nlibrary(tidyverse)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──\n✔ dplyr 1.1.4 ✔ readr 2.1.5\n✔ forcats 1.0.0 ✔ stringr 1.5.1\n✔ ggplot2 3.4.4 ✔ tibble 3.2.1\n✔ lubridate 1.9.3 ✔ tidyr 1.3.1\n✔ purrr 1.0.2 \n── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──\n✖ dplyr::filter() masks stats::filter()\n✖ dplyr::lag() masks stats::lag()\nℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors\n```\n\n\n:::\n\n```{.r .cell-code .hidden}\nlibrary(ggVennDiagram)\n```\n\n::: {.cell-output .cell-output-stderr .hidden}\n\n```\n\nAttaching package: 'ggVennDiagram'\n\nThe following object is masked from 'package:tidyr':\n\n unite\n```\n\n\n:::\n:::\n\n\n\n\n\nFirst we need to create the df with the relevant 'traits' for each model\n\n\n\n\n::: {.cell}\n\n```{.r .cell-code .hidden}\nx <- list(Niche=c(\"species agnostic\", \"structural\", \"synthetic network\"),\n ADBM=c(\"node-level\", \"mechanistic\"),\n `Transfer`=c(\"node-level\", \"embedding\", \"metaweb\"),\n PFIM=c(\"node-level\", \"mechanistic\", \"metaweb\"),\n Cascade=c(\"species agnostic\", \"structural\", \"synthetic network\"))\n\nvenn <- Venn(x)\ndata <- process_data(venn)\n```\n:::\n\n\n\n\nCreate venn diagram:\n\n\n\n\n::: {#cell-fig-venn .cell}\n\n```{.r .cell-code .hidden}\n#| label: fig-venn\n#| fig-cap: \"Venn diagram for qualitative analysis/overview of the fancy maths things\"\n#| fig-alt: \"TODO\"\nggVennDiagram(x, \n label = \"none\") +\n theme_void() +\n theme(legend.position = 'none')\n```\n\n::: {.cell-output-display}\n![Venn diagram for qualitative analysis/overview of the fancy maths things](model_qualitative_files/figure-jats/fig-venn-1.png){#fig-venn fig-alt='TODO'}\n:::\n:::\n\n\n\n\nLooking at it now I don't think this is the wayTM and trying to sort of 'ordinate' modelling space might actually be more meaningful... Specifically thinking here that I need to also actually just read about model comparison (but without the performance aspect)\n\n## References {.unnumbered}\n\n::: {#refs}\n:::",
"supporting": [
"model_qualitative_files/figure-jats"
],
Expand Down
Binary file modified _freeze/notebooks/model_qualitative/figure-html/fig-venn-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified _freeze/notebooks/model_qualitative/figure-ipynb/fig-venn-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified _freeze/notebooks/model_qualitative/figure-jats/fig-venn-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions index.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ I know table are awful but in this case they may make more sense. Also I don't t
| Stochastic | @rossbergFoodWebsExperts2006 | | | | | | | |
| Graph Embedding | @strydomGraphEmbeddingTransfer2023 | latent trait space | @strydomFoodWebReconstruction2022 | Generate metaweb for specific species pool | Probabilistic metaweb | interactions are 'encoded' and can thus be extracted and transferred to similar species | evolutionary backbones/signals |
| Trait-based | @caronAddressingEltonianShortfall2022 | mechanistic | @caronTrophicInteractionModels2023| | metaweb | traits determine interactions | feeding mechanisms are trait correlated |
| Random | | | | | | | chaos and anarchy |

: Lets make a table that gives an overview of the different topology generators that we will look at {#tbl-history}

Expand Down
28 changes: 17 additions & 11 deletions notebooks/model_qualitative.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -11,28 +11,34 @@ library(ggVennDiagram)
```


First we need to create the
First we need to create the df with the relevant 'traits' for each model

```{r}
genes <- paste("gene",1:1000,sep="")
set.seed(20231214)
x <- list(A=sample(genes,300),
B=sample(genes,525),
C=sample(genes,440),
D=sample(genes,350))
x <- list(Niche=c("species agnostic", "structural", "synthetic network"),
ADBM=c("node-level", "mechanistic"),
`Transfer`=c("node-level", "embedding", "metaweb"),
PFIM=c("node-level", "mechanistic", "metaweb"),
Cascade=c("species agnostic", "structural", "synthetic network"))
venn <- Venn(x)
data <- process_data(venn)
```

Create spatial plot:
Create venn diagram:

```{r}
#| label: fig-venn
#| fig-cap: "Venn diagram for qualitative analysis/overview of the fancy maths things"
#| fig-alt: "TODO"
ggVennDiagram(x) +
scale_fill_gradient(low="grey90",
high = "red")
ggVennDiagram(x,
label = "none") +
theme_void() +
theme(legend.position = 'none')
```

Looking at it now I don't think this is the wayTM and trying to sort of 'ordinate' modelling space might actually be more meaningful... Specifically thinking here that I need to also actually just read about model comparison (but without the performance aspect)

## References {.unnumbered}

::: {#refs}
Expand Down
Binary file modified notebooks/model_qualitative_files/figure-ipynb/fig-venn-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 76d1df6

Please sign in to comment.