-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
293 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import pytest | ||
import numpy as np | ||
|
||
|
||
def test_border_score(): | ||
from spatial_maps.bordercells import border_score | ||
from spatial_maps.tools import make_test_border_map | ||
from spatial_maps.fields import separate_fields_by_laplace | ||
|
||
box_size = [1.0, 1.0] | ||
rate = 1.0 | ||
bin_size = [0.01, 0.01] | ||
|
||
rate_map, pos_true, xbins, ybins = make_test_border_map( | ||
sigma=0.05, amplitude=rate, offset=0, box_size=box_size, bin_size=bin_size | ||
) | ||
|
||
labels = separate_fields_by_laplace(rate_map, threshold=0) | ||
bs = border_score(rate_map, labels) | ||
assert round(bs, 2) == 0.32 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
import numpy as np | ||
import pytest | ||
import quantities as pq | ||
from spatial_maps.tools import make_test_grid_rate_map, make_test_border_map | ||
from spatial_maps.fields import ( | ||
separate_fields_by_laplace, | ||
find_peaks, | ||
calculate_field_centers, | ||
distance_to_edge_function, | ||
map_pass_to_unit_circle, | ||
) | ||
|
||
|
||
def test_find_peaks(): | ||
box_size = np.array([1.0, 1.0]) | ||
rate = 5.0 | ||
bin_size = [0.01, 0.01] | ||
sigma = 0.05 | ||
spacing = 0.3 | ||
|
||
rate_map, pos_fields, xbins, ybins = make_test_grid_rate_map( | ||
sigma=sigma, spacing=spacing, amplitude=rate, offset=0, box_size=box_size, bin_size=bin_size, repeat=0 | ||
) | ||
peaks = find_peaks(rate_map) | ||
pos_peaks = np.array([xbins[peaks[:, 1]], ybins[peaks[:, 0]]]).T | ||
print(pos_peaks) | ||
assert all([np.isclose(p, pos_peaks, rtol=1e-3).prod(axis=1).any() for p in pos_fields]) | ||
|
||
|
||
def test_separate_fields_by_laplace(): | ||
box_size = [1.0, 1.0] | ||
rate = 1.0 | ||
bin_size = [0.01, 0.01] | ||
sigma = 0.05 | ||
spacing = 0.3 | ||
|
||
rate_map, pos_true, xbins, ybins = make_test_grid_rate_map( | ||
sigma=sigma, spacing=spacing, amplitude=rate, offset=0.1, box_size=box_size, bin_size=bin_size, orientation=0.1 | ||
) | ||
|
||
labels = separate_fields_by_laplace(rate_map, threshold=0) | ||
peaks = calculate_field_centers(rate_map, labels) | ||
bump_centers = np.array([xbins[peaks[:, 0]], ybins[peaks[:, 1]]]) | ||
# The position of a 2D bin is defined to be its center | ||
for p in pos_true: | ||
assert np.isclose(p, pos_true).prod(axis=1).any() | ||
|
||
|
||
def test_distance_to_edge_function(): | ||
n_bins = 10 | ||
box_size = [1, 1] | ||
bin_size = box_size[0] / n_bins | ||
|
||
field = np.zeros((n_bins, n_bins)) | ||
field[2:8, 2:8] = 1 | ||
d = distance_to_edge_function(0.5, 0.5, field, box_size, interpolation="linear") | ||
|
||
# assert edges 3/10 of the box size from center | ||
for a in [i * np.pi / 2 for i in range(4)]: | ||
assert np.isclose(0.3, d(a)) | ||
|
||
# assert area within 5 % of expected result | ||
angles = np.linspace(0, 2 * np.pi, 10000) | ||
dist = d(angles) | ||
x = dist * np.cos(angles) | ||
y = dist * np.sin(angles) | ||
|
||
dx = np.gradient(x) | ||
dy = np.gradient(y) | ||
|
||
# Greens theorem | ||
area = 0.5 * np.sum(x * dy - y * dx) | ||
exact_area = np.sum(field) / np.size(field) * box_size[0] ** 2 | ||
|
||
assert np.abs(area - exact_area) / exact_area < 0.05 | ||
|
||
|
||
def test_map_pass_to_unit_circle(): | ||
|
||
dist_func = lambda theta: 1 | ||
x_c, y_c = (0.5, 0.5) | ||
theta = np.linspace(np.pi, 2 * np.pi, 100) | ||
t = theta | ||
x = x_c + np.cos(theta) | ||
y = y_c + np.sin(theta) | ||
|
||
r, angle, _, _ = map_pass_to_unit_circle(x, y, t, x_c, y_c, dist_func=dist_func) | ||
|
||
assert np.all(np.isclose(angle, theta % (2 * np.pi))) | ||
assert np.all(np.isclose(1, r)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import numpy as np | ||
import pytest | ||
from spatial_maps import SpatialMap | ||
import quantities as pq | ||
from spatial_maps.tools import make_test_grid_rate_map, make_test_spike_map, autocorrelation | ||
from spatial_maps.fields import find_peaks | ||
from spatial_maps.gridcells import gridness, spacing_and_orientation, separate_fields_by_distance | ||
|
||
|
||
def test_gridness(): | ||
box_size = np.array([1.0, 1.0]) | ||
rate = 5.0 | ||
bin_size = [0.01, 0.01] | ||
spacing_true = 0.3 | ||
|
||
rate_map, pos_fields, xbins, ybins = make_test_grid_rate_map( | ||
sigma=0.05, spacing=spacing_true, amplitude=rate, offset=0, box_size=box_size, bin_size=bin_size | ||
) | ||
|
||
g = gridness(rate_map) | ||
assert round(g, 1) == 1.3 | ||
|
||
|
||
def test_spacing_and_orientation_from_true_peaks(): | ||
box_size = np.array([1.0, 1.0]) | ||
rate = 5.0 | ||
bin_size = [0.01, 0.01] | ||
spacing_true = 0.3 | ||
|
||
rate_map, pos_fields, xbins, ybins = make_test_grid_rate_map( | ||
sigma=0.05, spacing=spacing_true, amplitude=rate, offset=0, box_size=box_size, bin_size=bin_size | ||
) | ||
|
||
spacing, orientation = spacing_and_orientation(pos_fields, box_size) | ||
assert spacing == spacing_true | ||
assert round(orientation * 180 / np.pi) == 30 | ||
|
||
|
||
def test_spacing_and_orientation_from_autocorr(): | ||
box_size = np.array([1.0, 1.0]) | ||
rate = 5.0 | ||
bin_size = [0.01, 0.01] | ||
spacing_true = 0.3 | ||
orientation_true = 0.3 | ||
|
||
rate_map, pos_fields, xbins, ybins = make_test_grid_rate_map( | ||
sigma=0.05, | ||
spacing=spacing_true, | ||
amplitude=rate, | ||
offset=0, | ||
box_size=box_size, | ||
bin_size=bin_size, | ||
orientation=orientation_true, | ||
) | ||
autocorrelogram = autocorrelation(rate_map) | ||
peaks = find_peaks(autocorrelogram) | ||
real_peaks = peaks * bin_size | ||
autocorrelogram_box_size = box_size * autocorrelogram.shape[0] / rate_map.shape[0] | ||
spacing, orientation = spacing_and_orientation(real_peaks, autocorrelogram_box_size) | ||
assert round(spacing, 1) == spacing_true | ||
assert round(orientation, 1) == orientation_true | ||
|
||
|
||
def test_separate_fields_by_distance(): | ||
box_size = [1.0, 1.0] | ||
rate = 1.0 | ||
bin_size = [0.01, 0.01] | ||
|
||
rate_map, pos_true, xbins, ybins = make_test_grid_rate_map( | ||
sigma=0.05, spacing=0.3, amplitude=rate, offset=0, box_size=box_size, bin_size=bin_size | ||
) | ||
|
||
peaks, radius = separate_fields_by_distance(rate_map) | ||
bump_centers = np.array([xbins[peaks[:, 0]], ybins[peaks[:, 1]]]) | ||
# The position of a 2D bin is defined to be its center | ||
for p in pos_true: | ||
assert np.isclose(p, pos_true).prod(axis=1).any() | ||
|
||
|
||
def test_separate_fields_by_distance_2(): | ||
Y, X = np.mgrid[0:100, 0:100] | ||
fx, fy = np.mgrid[5:95:20, 5:95:20] | ||
fields = np.array([fx.ravel(), fy.ravel()]).T | ||
|
||
rate_map = np.zeros((100, 100)) | ||
|
||
for field in fields: | ||
dY = Y - field[0] | ||
dX = X - field[1] | ||
rate_map += np.exp(-1 / 2 * (dY**2 + dX**2) / 10) # Gaussian-ish | ||
|
||
# should be removed by the algorithm because they are lower and close to existing fields | ||
noise_fields = [[60, 52], [45, 35]] | ||
|
||
for field in noise_fields: | ||
dY = Y - field[0] | ||
dX = X - field[1] | ||
rate_map += 0.5 * np.exp(-1 / 2 * (dY**2 + dX**2) / 10) # Gaussian-ish | ||
|
||
found_fields, radius = separate_fields_by_distance(rate_map) | ||
|
||
for field in found_fields: | ||
assert np.isclose(field, fields).prod(axis=1).any() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import numpy as np | ||
import pytest | ||
from spatial_maps.maps import SpatialMap | ||
import quantities as pq | ||
from spatial_maps.tools import make_test_grid_rate_map, make_test_spike_map | ||
|
||
|
||
def test_rate_map(): | ||
box_size = [1.0, 1.0] | ||
rate = 5.0 | ||
bin_size = [0.01, 0.01] | ||
n_step = 10**4 | ||
step_size = 0.1 | ||
sigma = 0.1 | ||
spacing = 0.3 | ||
smoothing = 0.03 | ||
|
||
rate_map_true, pos_fields, xbins, ybins = make_test_grid_rate_map( | ||
sigma=sigma, spacing=spacing, amplitude=rate, box_size=box_size, bin_size=bin_size | ||
) | ||
|
||
x, y, t, spikes = make_test_spike_map( | ||
pos_fields=pos_fields, box_size=box_size, rate=rate, n_step=n_step, step_size=step_size, sigma=sigma | ||
) | ||
smap = SpatialMap(smoothing=smoothing, box_size=box_size, bin_size=bin_size) | ||
rate_map = smap.rate_map(x, y, t, spikes) | ||
|
||
rate_map[np.isnan(rate_map)] = 0 | ||
diff = rate_map_true - rate_map | ||
X, Y = np.meshgrid(xbins, ybins) | ||
|
||
samples = [] | ||
for p in pos_fields: | ||
mask = np.sqrt((X - p[0]) ** 2 + (Y - p[1]) ** 2) < 0.1 | ||
samples.append(diff[mask]) | ||
peak_diff = np.abs(np.mean([s.min() for s in samples if s.size > 0])) | ||
assert peak_diff < 0.5 | ||
|
||
|
||
def test_spatial_rate_map_diag(): | ||
N = 10 | ||
bin_size = 1 | ||
box_size = 1.0 | ||
x = np.linspace(0.0, box_size, N) | ||
y = np.linspace(0.0, box_size, N) | ||
t = np.linspace(0.1, 10.1, N) | ||
spike_times = np.arange(0.1, 10.1, 0.5) | ||
sm = SpatialMap(box_size=box_size, bin_size=bin_size) | ||
ratemap = sm.rate_map(x, y, t, spike_times) | ||
print(ratemap) | ||
assert all(np.diff(np.diag(ratemap)) < 1e-10) | ||
assert ratemap.shape == (int(box_size / bin_size), int(box_size / bin_size)) | ||
|
||
|
||
def test_occupancy_map_diag(): | ||
N = 3 | ||
bin_size = 0.5 | ||
box_size = 1.5 | ||
x = np.linspace(0.0, box_size, N) | ||
y = np.linspace(0.0, box_size, N) | ||
t = np.linspace(0, 10.0, N) | ||
|
||
sm = SpatialMap(box_size=box_size, bin_size=bin_size) | ||
occmap_expected = np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5]]) | ||
occmap = sm.occupancy_map(x, y, t) | ||
occmap[np.isnan(occmap)] = 0 | ||
assert np.array_equal(occmap, occmap_expected) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
import numpy as np | ||
import pytest | ||
|
||
|
||
def test_calc_population_vector_correlation(): | ||
from spatial_maps.stats import population_vector_correlation as pvcorr | ||
|
||
rmaps1 = np.array([[[1, 0.1], [0.1, 4]], [[6, 0.1], [0.1, 2]], [[2, 0.1], [0.1, 3]]]) | ||
rmaps2 = np.array([[[2, 0.2], [0.2, 8]], [[12, 0.2], [0.2, 4]], [[4, 0.2], [0.2, 6]]]) | ||
rmaps2 += 10e-5 | ||
pv = pvcorr(rmaps1, rmaps2) | ||
err = pv - 1 | ||
assert err < 10e-5 |