-
Notifications
You must be signed in to change notification settings - Fork 31
TorchVision models
Source: Pytorch/Vision repo
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.
@inproceedings{krizhevsky2012imagenet,
title={Imagenet classification with deep convolutional neural networks},
author={Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E},
booktitle={Advances in Neural Information Processing Systems (NIPS)},
pages={1097--1105},
year={2012}
}
- alexnet(num_classes=1000, pretrained='imagenet')`
G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected convolutional networks,” in Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 2. IEEE, 2017, p. 3.
@inproceedings{huang2017densely,
title={Densely connected convolutional networks},
author={Huang, Gao and Liu, Zhuang and Weinberger, Kilian Q and van der Maaten, Laurens},
booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
volume={1},
number={2},
pages={3},
year={2017},
organization={IEEE}
}
densenet121(num_classes=1000, pretrained='imagenet')
densenet161(num_classes=1000, pretrained='imagenet')
densenet169(num_classes=1000, pretrained='imagenet')
densenet201(num_classes=1000, pretrained='imagenet')
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp. 770–778.
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={770--778},
year={2016},
organization={IEEE}
resnet18(num_classes=1000, pretrained='imagenet')
resnet34(num_classes=1000, pretrained='imagenet')
resnet50(num_classes=1000, pretrained='imagenet')
resnet101(num_classes=1000, pretrained='imagenet')
resnet152(num_classes=1000, pretrained='imagenet')
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.
@article{iandola2016squeezenet,
title={Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size},
author={Iandola, Forrest N and Han, Song and Moskewicz, Matthew W and Ashraf, Khalid and Dally, William J and Keutzer, Kurt},
journal={arXiv preprint arXiv:1602.07360},
year={2016}
}
squeezenet1_0(num_classes=1000, pretrained='imagenet')
squeezenet1_1(num_classes=1000, pretrained='imagenet')
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
@article{simonyan2014very,
title={Very deep convolutional networks for large-scale image recognition},
author={Simonyan, Karen and Zisserman, Andrew},
journal={arXiv preprint arXiv:1409.1556},
year={2014}
}
vgg11(num_classes=1000, pretrained='imagenet')
vgg13(num_classes=1000, pretrained='imagenet')
vgg16(num_classes=1000, pretrained='imagenet')
vgg19(num_classes=1000, pretrained='imagenet')
vgg11_bn(num_classes=1000, pretrained='imagenet')
vgg13_bn(num_classes=1000, pretrained='imagenet')
vgg16_bn(num_classes=1000, pretrained='imagenet')
vgg19_bn(num_classes=1000, pretrained='imagenet')